首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4053篇
  免费   21篇
  国内免费   28篇
  4102篇
  2022年   12篇
  2021年   23篇
  2020年   25篇
  2019年   40篇
  2018年   49篇
  2017年   16篇
  2016年   23篇
  2015年   99篇
  2014年   272篇
  2013年   296篇
  2012年   342篇
  2011年   479篇
  2010年   413篇
  2009年   133篇
  2008年   147篇
  2007年   146篇
  2006年   151篇
  2005年   133篇
  2004年   126篇
  2003年   108篇
  2002年   75篇
  2001年   28篇
  2000年   39篇
  1999年   55篇
  1998年   69篇
  1997年   61篇
  1996年   59篇
  1995年   72篇
  1994年   67篇
  1993年   58篇
  1992年   53篇
  1991年   44篇
  1990年   43篇
  1989年   32篇
  1988年   31篇
  1987年   35篇
  1986年   21篇
  1985年   24篇
  1984年   43篇
  1983年   48篇
  1982年   31篇
  1981年   29篇
  1980年   24篇
  1979年   11篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   5篇
  1971年   1篇
排序方式: 共有4102条查询结果,搜索用时 15 毫秒
91.
Tonic inhibition in the brain is mediated largely by specialized populations of extrasynaptic receptors, γ-aminobutyric acid receptors (GABA(A)Rs). In the dentate gyrus region of the hippocampus, tonic inhibition is mediated primarily by GABA(A)R subtypes assembled from α4β2/3 with or without the δ subunit. Although the gating of these receptors is subject to dynamic modulation by agents such as anesthetics, barbiturates, and neurosteroids, the cellular mechanisms neurons use to regulate their accumulation on the neuronal plasma membrane remain to be determined. Using immunoprecipitation coupled with metabolic labeling, we demonstrate that the α4 subunit is phosphorylated at Ser(443) by protein kinase C (PKC) in expression systems and hippocampal slices. In addition, the β3 subunit is phosphorylated on serine residues 408/409 by PKC activity, whereas the δ subunit did not appear to be a PKC substrate. We further demonstrate that the PKC-dependent increase of the cell surface expression of α4 subunit-containing GABA(A)Rs is dependent on Ser(443). Mechanistically, phosphorylation of Ser(443) acts to increase the stability of the α4 subunit within the endoplasmic reticulum, thereby increasing the rate of receptor insertion into the plasma membrane. Finally, we show that phosphorylation of Ser(443) increases the activity of α4 subunit-containing GABA(A)Rs by preventing current run-down. These results suggest that PKC-dependent phosphorylation of the α4 subunit plays a significant role in enhancing the cell surface stability and activity of GABA(A)R subtypes that mediate tonic inhibition.  相似文献   
92.
Bone morphogenetic protein (BMP) receptor kinases are tightly regulated to control development and tissue homeostasis. Mutant receptor kinase domains escape regulation leading to severely degenerative diseases and represent an important therapeutic target. Fibrodysplasia ossificans progressiva (FOP) is a rare but devastating disorder of extraskeletal bone formation. FOP-associated mutations in the BMP receptor ALK2 reduce binding of the inhibitor FKBP12 and promote leaky signaling in the absence of ligand. To establish structural mechanisms of receptor regulation and to address the effects of FOP mutation, we determined the crystal structure of the cytoplasmic domain of ALK2 in complex with the inhibitors FKBP12 and dorsomorphin. FOP mutations break critical interactions that stabilize the inactive state of the kinase, thereby facilitating structural rearrangements that diminish FKBP12 binding and promote the correct positioning of the glycine-serine-rich loop and αC helix for kinase activation. The balance of these effects accounts for the comparable activity of R206H and L196P. Kinase activation in the clinically benign mutant L196P is far weaker than R206H but yields equivalent signals due to the stronger interaction of FKBP12 with R206H. The presented ALK2 structure offers a valuable template for the further design of specific inhibitors of BMP signaling.  相似文献   
93.
Bruton tyrosine kinase (BTK) is an important target in oncology and (auto)immunity. Various BTK inhibitors have been approved or are currently in clinical development. A novel BTK inhibitor series was developed starting with a quinazoline core. Moving from a quinazoline to a quinoline core provided a handle for selectivity for BTK over EGFR and resulted in the identification of potent and selective BTK inhibitors with good potency in human whole blood assay. Furthermore, proof of concept of this series for BTK inhibition was shown in an in vivo mouse model using one of the compounds identified.  相似文献   
94.
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells.  相似文献   
95.
Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between “on” and “off” and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed “linear framework” for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.  相似文献   
96.
Although constitutive activation of Janus kinase 3 (Jak3) leads to different cancers, the mechanism of trans-molecular regulation of Jak3 activation is not known. Previously we reported that Jak3 interactions with adapter protein p52ShcA (Shc) facilitate mucosal homeostasis. In this study, we characterize the structural determinants that regulate the interactions between Jak3 and Shc and demonstrate the trans-molecular mechanism of regulation of Jak3 activation by Shc. We show that Jak3 autophosphorylation was the rate-limiting step during Jak3 trans-phosphorylation of Shc where Jak3 directly phosphorylated two tyrosine residues in Src homology 2 (SH2) domain and one tyrosine residue each in calponin homology 1 (CH1) domain and phosphotyrosine interaction domain (PID) of Shc. Direct interactions between mutants of Jak3 and Shc showed that although FERM domain of Jak3 was sufficient for binding to Shc, CH1 and PID domains of Shc were responsible for binding to Jak3. Functionally Jak3 was autophosphorylated under IL-2 stimulation in epithelial cells. However, Shc recruited tyrosine phosphatases SHP2 and PTP1B to Jak3 and thereby dephosphorylated Jak3. Thus we not only characterize Jak3 interaction with Shc, but also demonstrate the molecular mechanism of intracellular regulation of Jak3 activation where Jak3 interactions with Shc acted as regulators of Jak3 dephosphorylation through direct interactions of Shc with both Jak3 and tyrosine phosphatases.  相似文献   
97.
The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in hematopoietic cells and plays crucial roles in the immune response through reorganization of the actin cytoskeleton. We previously reported that p57/coronin-1 is phosphorylated by protein kinase C, and the phosphorylation down-regulates the association of this protein with actin. In this study we analyzed the phosphorylation sites of p57/coronin-1 derived from HL60 human leukemic cells by MALDI-TOF-MS, two-dimensional gel electrophoresis, and Phos-tag® acrylamide gel electrophoresis in combination with site-directed mutagenesis and identified Ser-2 and Thr-412 as major phosphorylation sites. A major part of p57/coronin-1 was found as an unphosphorylated form in HL60 cells, but phosphorylation at Thr-412 of p57/coronin-1 was detected after the cells were treated with calyculin A, a Ser/Thr phosphatase inhibitor, suggesting that p57/coronin-1 undergoes constitutive turnover of phosphorylation/dephosphorylation at Thr-412. A diphosphorylated form of p57/coronin-1 was detected after the cells were treated with phorbol 12-myristate 13-acetate plus calyculin A. We then assessed the effects of phosphorylation at Thr-412 on the association of p57/coronin-1 with actin. A co-immunoprecipitation experiment with anti-p57/coronin-1 antibodies and HL60 cell lysates revealed that β-actin was co-precipitated with the unphosphorylated form but not with the phosphorylated form at Thr-412 of p57/coronin-1. Furthermore, the phosphorylation mimic (T412D) of p57/coronin-1 expressed in HEK293T cells exhibited lower affinity for actin than the wild-type or the unphosphorylation mimic (T412A) did. These results indicate that the constitutive turnover of phosphorylation at Thr-412 of p57/coronin-1 regulates its interaction with actin.  相似文献   
98.
Summary Immunohistochemical properties of the terminal nerve network in the rat heart were assessed by use of the elution-restaining method. The colocalization of the enzymes involved in catecholamine synthesis (tyrosine hydroxylase — TH, dopamine--hydroxylase — DBH) as well as the respective distributions of the neuropeptides associated with the adrenergic nervous system (neuropeptide tyrosine — NPY, C-terminal flanking peptide of neuropeptide Y — C-PON) were studied in series of serial sections throughout the interatrial septum and the atrioventricular junction. Our data suggest that ganglion cells of sulcus terminalis as well as the epicardial ganglia enclosed between the superior vena cava and ascending aorta are VIP- and TH-negative, but neuropeptide Y- and DBH-immunoreactive. They give rise to three intraseptal nerves directed towards the specialised structures of the atrioventricular junction. These nerve fascicles contain abundant, thick TH-immunoreactive nerve fibres and scarce, thin NPY- and DBH-immunoreactive fibres. The cell bodies of the intramural ganglion cells localized between the right and left branches of the bundle of His (Moravec and Moravec 1984) are strongly TH- and DBH-immunoreactive. They are innervated by thick nerve fibres having the same immunohistochemical properties (NPY- and DBH-immunoreactivities) as those of a subpopulation of the epicardial ganglion cells and seem to supply some of the TH-immunoreactive nerve fibres directed via the intraseptal nerves to the epicardial ganglia. The existence of a multicomponent nerve network, characterized by a reciprocal innervation of the sinus node and atrioventricular node areas, is suggested by our immunohistochemical data.  相似文献   
99.
The mammalian target of rapamycin complex 1 (mTORC1) links the control of mRNA translation, cell growth, and metabolism to diverse stimuli. Inappropriate activation of mTORC1 can lead to cancer. Phorbol esters are naturally occurring products that act as potent tumor promoters. They activate isoforms of protein kinase C (PKCs) and stimulate the oncogenic MEK/ERK signaling cascade. They also activate mTORC1 signaling. Previous work indicated that mTORC1 activation by the phorbol ester PMA (phorbol 12-myristate 13-acetate) depends upon PKCs and may involve MEK. However, the precise mechanism(s) through which they activate mTORC1 remains unclear. Recent studies have implicated both the ERKs and the ERK-activated 90-kDa ribosomal S6 kinases (p90(RSK)) in activating mTORC1 signaling via phosphorylation of TSC2 (a regulator of mTORC1) and/or the mTORC1 component raptor. However, the relative importance of each of these kinases and phosphorylation events for the activation of mTORC1 signaling is unknown. The recent availability of MEK (PD184352) and p90(RSK) (BI-D1870) inhibitors of improved specificity allowed us to address the roles of these protein kinases in controlling mTORC1 in a variety of human and rodent cell types. In parallel, we used specific shRNAs against p90(RSK1) and p90(RSK2) to further test their roles in regulating mTORC1 signaling. Our data indicate that p90(RSKs) are dispensable for the activation of mTORC1 signaling by phorbol esters in all cell types tested. Our data also reveal striking diversity in the requirements for MEK/ERK in the control of mTORC1 between different cell types, pointing to additional signaling connections between phorbol esters and mTORC1, which do not involve MEK/ERK. This study provides important information for the design of efficient strategies to combat the hyperactivation of mTORC1 signaling by oncogenic pathways.  相似文献   
100.
Postnatal development of dopaminergic system is closely related to the development of psychomotor function. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of dopamine and requires tetrahydrobiopterin (BH4) as a cofactor. To clarify the effect of partial BH4 deficiency on postnatal development of the dopaminergic system, we examined two lines of mutant mice lacking a BH4-biosynthesizing enzyme, including sepiapterin reductase knock-out (Spr(-/-)) mice and genetically rescued 6-pyruvoyltetrahydropterin synthase knock-out (DPS-Pts(-/-)) mice. We found that biopterin contents in the brains of these knock-out mice were moderately decreased from postnatal day 0 (P0) and remained constant up to P21. In contrast, the effects of BH4 deficiency on dopamine and TH protein levels were more manifested during the postnatal development. Both of dopamine and TH protein levels were greatly increased from P0 to P21 in wild-type mice but not in those mutant mice. Serotonin levels in those mutant mice were also severely suppressed after P7. Moreover, striatal TH immunoreactivity in Spr(-/-) mice showed a drop in the late developmental stage, when those mice exhibited hind-limb clasping behavior, a type of motor dysfunction. Our results demonstrate a critical role of biopterin in the augmentation of TH protein in the postnatal period. The developmental manifestation of psychomotor symptoms in BH4 deficiency might be attributable at least partially to high dependence of dopaminergic development on BH4 availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号