首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15292篇
  免费   546篇
  国内免费   388篇
  16226篇
  2024年   12篇
  2023年   114篇
  2022年   253篇
  2021年   250篇
  2020年   276篇
  2019年   470篇
  2018年   482篇
  2017年   219篇
  2016年   301篇
  2015年   431篇
  2014年   845篇
  2013年   1007篇
  2012年   536篇
  2011年   964篇
  2010年   657篇
  2009年   771篇
  2008年   797篇
  2007年   876篇
  2006年   814篇
  2005年   747篇
  2004年   620篇
  2003年   576篇
  2002年   486篇
  2001年   352篇
  2000年   314篇
  1999年   332篇
  1998年   358篇
  1997年   273篇
  1996年   249篇
  1995年   250篇
  1994年   212篇
  1993年   163篇
  1992年   148篇
  1991年   122篇
  1990年   109篇
  1989年   91篇
  1988年   84篇
  1987年   77篇
  1986年   42篇
  1985年   82篇
  1984年   116篇
  1983年   87篇
  1982年   72篇
  1981年   45篇
  1980年   41篇
  1979年   31篇
  1978年   15篇
  1977年   14篇
  1976年   11篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
93.
Autoimmune hepatitis (AIH) is an immune-mediated chronic inflammatory liver disease, and its pathogenesis is not fully understood. Our previous study discovered that receptor interacting protein kinase 3 (RIP3) is correlated with serum transaminase levels in AIH patients. However, its role and underlying mechanism in AIH are poorly understood. Here, we detected the increased expression and activation of RIP3 in livers of patients and animal models with AIH. The inhibition of RIP3 kinase by GSK872 prevented concanavalin A (ConA)-induced immune-mediated hepatitis (IMH) by reduced hepatic proinflammatory cytokines and immune cells including Th17 cells and macrophages. Further experiments revealed that RIP3 inhibition resulted in an increase in CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) with immunoregulatory properties in the liver, spleen, and peripheral blood. Moreover, the depletion of Gr-1+ MDSCs abrogated the protective effect and immune suppression function of GSK872 in ConA-induced IMH. Altogether, our data demonstrate that RIP3 blockade prevents ConA-induced IMH through promoting MDSCs infiltration. Inhibition of RIP3 kinase may be a novel therapeutic avenue for AIH treatment.  相似文献   
94.
Functional genomic studies and drug candidate testing both require high throughput, parallel experimentation strategies to screen for variable cellular behaviors. In this article we describe the use of an impedance sensing electrode array that is capable of sensing cell "presence" as well as the extent of cell (focal) attachment to the substrate. The signals provided by mouse fibroblasts on a sensing structure containing four different sized electrodes are reported. In the absence of cells, each electrode's impedance was found to depend as expected on electrode size and frequency. The impedance increased by several-fold when fibroblasts attached and spread out over time. More notably, the sensors also detected the cellular response to the protein kinase C inhibitor, H-7. H-7 inhibits actomyosin contractility; thereafter, the loss of focal adhesion complexes occurs. The sensors, in turn, detected an impedance decrease after H-7 addition and an increase in impedance after H-7 removal.  相似文献   
95.
Barbara P Rattner 《Fly》2013,7(3):135-141
Hedgehog (Hh) signaling is essential for proper tissue patterning and maintenance and has a substantial impact on human disease. While many of the main components and mechanisms involved in transduction of the Hh signal have been identified, the details of how the pathway functions are continually being refined. One aspect that has attracted much attention recently is the involvement of G-protein-coupled receptor kinases (GRKs) in the pathway. These regulators of G-protein-coupled receptor (GPCR) signaling have an evolutionarily-conserved function in promoting high-threshold Hh target gene expression through regulation of Smoothened (Smo), a GPCR family member that activates intracellular Hh signaling. Several models of how GRKs impact on Smo to increase downstream signaling have been proposed. Recently, we demonstrated that these kinases have surprisingly complex and conflicting roles, acting to limit signaling through the pathway while also promoting Smo activity. In addition to the previously described direct effects of Gprk2 on Smo activation, Gprk2 also indirectly affects Hh signaling by controlling production of the second messenger cyclic AMP to influence Protein kinase A activity.  相似文献   
96.
Adhesion is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Lipid rafts, cholesterol-rich domains, function in compartmentalization of cellular processes. In E. histolytica, rafts participate in parasite-host cell interactions; however, their role in parasite-host extracellular matrix (ECM) interactions has not been explored. Disruption of rafts with a cholesterol extracting agent, methyl-β-cyclodextrin (MβCD), resulted in inhibition of adhesion to collagen, and to a lesser extent, to fibronectin. Replenishment of cholesterol in MβCD-treated cells, using a lipoprotein-cholesterol concentrate, restored adhesion to collagen. Confocal microscopy revealed enrichment of rafts at parasite-ECM interfaces. A raft-resident adhesin, the galactose/N-acetylgalactosamine-inhibitable lectin, mediates interaction to host cells by binding to galactose or N-acetylgalactosamine moieties on host glycoproteins. In this study, galactose inhibited adhesion to collagen, but not to fibronectin. Together these data suggest that rafts participate in E. histolytica-ECM interactions and that raft-associated Gal/GalNAc lectin may serve as a collagen receptor.  相似文献   
97.
The p75NTR (where NTR is neurotrophin receptor) can mediate many distinct cellular functions, including cell survival and apoptosis, axonal growth and cell proliferation, depending on the cellular context. This multifunctional receptor is widely expressed in the CNS (central nervous system) during development, but its expression is restricted in the adult brain. However, p75NTR is induced by a variety of pathophysiological insults, including seizures, lesions and degenerative disease. We have demonstrated previously that p75NTR is induced by seizures in neurons, where it induces apoptosis, and in astrocytes, where it may regulate proliferation. In the present study, we have investigated whether the inflammatory cytokines IL (interleukin)-1β and TNF-α (tumour necrosis factor-α), that are commonly elevated in these pathological conditions, mediate the regulation of p75NTR in neurons and astrocytes. We have further analysed the signal transduction pathways by which these cytokines induce p75NTR expression in the different cell types, specifically investigating the roles of the NF-κB (nuclear factor κB) and p38 MAPK (mitogen-activated protein kinase) pathways. We have demonstrated that both cytokines regulate p75NTR expression; however, the mechanisms governing this regulation are cytokine- and cell-type specific. The distinct mechanisms of cytokine-mediated p75NTR regulation that we demonstrate in the present study may facilitate therapeutic intervention in regulation of this receptor in a cell-selective manner.  相似文献   
98.
The MARCKS (myristylated alanine-rich C-kinase substrate) protein is an abundant calmodulin-binding protein that is a major and specific endogenous substrate of protein kinase C (PKC). Stimulation of cells with phorbol esters or other activators of PKC has been shown previously to result in rapid phosphorylation of MARCKS proteins and redistribution of these myristylated C-kinase substrates from membrane to cytosol. Here we show that NIH3T3 murine fibroblasts transformed by p21-HA-C-RAS or pp60-V-SRC oncoproteins have markedly reduced levels of p68-MARCKS and that most of the remaining MARCKS protein is found in the cytosol. 3T3 cells containing a nontransforming oncoprotein p26-BCL2, in contrast, exhibited normal levels and distribution of p68-MARCKS. When taken together with recent evidence that MARCKS proteins are involved in regulating organization of the membrane cytoskeleton, our findings suggest that oncoprotein-mediated alterations in MARCKS protein levels and subcellular distribution may contribute to the development or maintenance of the transformed phenotpe.  相似文献   
99.
Recently, we have described a panel of metastasis-associated antigens in the rat, i.e., of molecules expressed on metastasizing, but not on nonmetastasizing tumor lines. One of these molecules, recognized by the monoclonal antibody D6.1 and named accordingly D6.1A, was found to be abundantly expressed predominantly on mesenchyme-derived cells. The DNA of the antigen has been isolated and cloned. Surprisingly, the gene product proved to interfere strongly with coagulation.

The 1.182-kb cDNA codes for a 235–amino acid long molecule with a 74.2% homology in the nucleotide and a 70% homology in the amino acid sequence to CO-029, a human tumor-associated molecule. According to the distribution of hydrophobic and hydrophilic amino acids, D6.1A belongs to the tetraspanin superfamily. Western blotting of D6.1A-positive metastasizing tumor lines revealed that the D6.1A, like many tetraspanin molecules, is linked to further membrane molecules, one of which could be identified as α6β1 integrin. Transfection of a low-metastasizing tumor cell line with D6.1A cDNA resulted in increased metastatic potential and provided a clue as to the functional role of D6.1A. We noted massive bleeding around the metastases and, possibly as a consequence, local infarctions predominantly in the mesenteric region and all signs of a consumption coagulopathy. By application of the D6.1 antibody the coagulopathy was counterregulated, though not prevented.

It has been known for many years that tumor growth and progression is frequently accompanied by thrombotic disorders. Our data suggest that the phenomenon could well be associated with the expression of tetraspanin molecules.

  相似文献   
100.
In the present study, the whole-cell patch-clamp technique was applied to follow the inhibitory effect of genistein — a tyrosine kinase inhibitor and a natural anticancer agent—on the activity of voltage-gated potassium channels Kv1.3 expressed in human T lymphocytes (TL). Obtained data provide evidence that genistein application in the concentration range of 1–80 μM reversibly decreased the whole-cell potassium currents in TL in a concentration-dependent manner to about 0.23 of the control value. The half-blocking concentration range of genistein was from 10 to 40 μM. The current inhibition was correlated in time with a significant decrease of the current activation rate. The steady-state activation of the currents was unchanged upon application of genistein, as was the inactivation rate. The inhibitory effect of genistein on the current amplitude and activation kinetics was voltage-independent. The current inhibition was not changed significantly in the presence of 1 mM of sodium orthovanadate, a tyrosine phosphatase inhibitor. Application of daidzein, an inactive genistein analogue, did not affect significantly either the current amplitudes or the activation kinetics. Possible mechanisms of the observed phenomena and their significance for genistein-induced inhibition of cancer cell proliferation are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号