首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4947篇
  免费   512篇
  国内免费   1016篇
  6475篇
  2024年   21篇
  2023年   99篇
  2022年   89篇
  2021年   133篇
  2020年   213篇
  2019年   191篇
  2018年   190篇
  2017年   201篇
  2016年   242篇
  2015年   185篇
  2014年   219篇
  2013年   240篇
  2012年   191篇
  2011年   285篇
  2010年   181篇
  2009年   279篇
  2008年   292篇
  2007年   326篇
  2006年   267篇
  2005年   255篇
  2004年   200篇
  2003年   212篇
  2002年   178篇
  2001年   144篇
  2000年   155篇
  1999年   135篇
  1998年   108篇
  1997年   109篇
  1996年   94篇
  1995年   100篇
  1994年   86篇
  1993年   93篇
  1992年   93篇
  1991年   66篇
  1990年   72篇
  1989年   48篇
  1988年   51篇
  1987年   49篇
  1986年   47篇
  1985年   52篇
  1984年   48篇
  1983年   40篇
  1982年   46篇
  1981年   31篇
  1980年   32篇
  1979年   30篇
  1978年   14篇
  1977年   13篇
  1976年   12篇
  1975年   6篇
排序方式: 共有6475条查询结果,搜索用时 0 毫秒
111.
巴西蘑菇能够降解棉籽壳和麦草两种培养基中木质纤维素复合体中的全部组分,属于白腐真菌;巴西蘑菇降解的有机物质的绝大部分被菌体的呼吸过程消耗掉,其绝对生物学效率较低,仅为4.41%~5.25%;在栽培前期木质素的降解速率大于纤维素和半纤维素,这对纤维素和半纤维素的降解十分有利;非木质纤维素组分主要在菌丝生长阶段被利用,而木质纤维素是子实体生长发育阶段的主要碳源;就整个栽培过程而言,巴西蘑菇生长发育所需要的82.39%~84.50%的碳源来自木质纤维素。  相似文献   
112.
金矮生苹果土壤水分合理供给范围研究   总被引:1,自引:2,他引:1  
王克勤 《应用生态学报》2003,14(9):1533-1537
对7年生田间和2年生盆栽金矮生苹果(Malus pumila)不同土壤水分(SWC)条件下水分利用效率(WUE)研究表明。SWC约为10%时,WUE最大值在所有处理中最高(230μmolCO2·g-1 H2O);在水分供应充足时,WUE最大值只有160μmolCO2·g-1 H2O左右,各SWC水平间差异不显著.WUE随SWC的变化与光照条件有关。  相似文献   
113.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was char-acterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then de-clined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dis-sipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than –21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon re-watering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   
114.
The production of waste creates both direct and indirect environmental impacts. A range of strategies are available to reduce the generation of waste by industry and households, and to select waste treatment approaches that minimize environmental harm. However, evaluating these strategies requires reliable and detailed data on waste production and treatment. Unfortunately, published Australian waste data are typically highly aggregated, published by a variety of entities in different formats, and do not form a complete time‐series. We demonstrate a technique for constructing a multi‐regional waste supply‐use (MRWSU) framework for Australia using information from numerous waste data sources. This is the first MRWSU framework to be constructed (to the authors' knowledge) and the first sub‐national waste input‐output framework to be constructed for Australia. We construct the framework using the Industrial Ecology Virtual Laboratory (IELab), a cloud‐hosted computational platform for building Australian multi‐regional input‐output tables. The structure of the framework complies with the System of Environmental‐Economic Accounting (SEEA). We demonstrate the use of the MRWSU framework by calculating waste footprints that enumerate the full supply chain waste production for Australian consumers.  相似文献   
115.
Abstract. The effect of growth temperatures on quantum yield (φ) was examined for leaves at different stages of development within the immature canopies of two crops of field grown maize ( Zea mays cv. LG11) sown on 3 May and 20 June 1990. During the period of 23 to 49d after sowing, the crop sown on the 3 May experienced temperatures below 10°C on 19 occasions compared with only two for the crop sown on 20 June. A period of severe chilling at the end of May and the beginning of June was associated with a marked reduction in φ for all leaves in the early-sown crop. This chill-induced depression in φ was greater in recently emerged than more mature leaves in the canopy and was found to be accompanied by modifications in the polypeptide profiles of thylakoids isolated from the leaves. During the chilling period, decreases in some polypeptides, notably in the range of 41–42 and 20kDa apparent molecular size, and increases of polypeptides of c. 15–16kDa were observed compared with leaves developing at warmer temperatures in July. The efficiency of converting intercepted radiation into dry matter (conversion efficiency) was 42% lower in the early- than late-sown crop, but no significant relationship between conversion efficiency and quantum yield was found in either treatment.  相似文献   
116.
Mangrove forests are characterized by distinctive tree-height gradientsthat reflect complex spatial, within-stand differences in environmentalfactors,including nutrient dynamics, salinity, and tidal inundation, across narrowgradients. To determine patterns of nutrient limitation and the effects ofnutrient availability on plant growth and within-stand nutrient dynamics, weused a factorial experiment with three nutrient treatment levels (control, N,P)and three zones along a tree-height gradient (fringe, transition, dwarf) onoffshore islands in Belize. Transects were laid out perpendicular to theshoreline across a mangrove forest from a fringe stand along the seaward edge,through a stand of intermediate height, into a dwarf stand in the interior ofthe island. At three sites, three trees were fertilized per zone for 2yr. Although there was spatial variability in response, growth byR. mangle was generally nitrogen (N) -limited in thefringe zone;phosphorus (P) -limited in the dwarf zone; and, N- and/or P-limited in thetransition zone. Phosphorus-resorption efficiency decreased in all three zones,and N-resorption efficiency increased in the dwarf zone in response to Penrichment. The addition of N had no effect on either P or N resorptionefficiencies. Belowground decomposition was increased by P enrichment in allzones, whereas N enrichment had no effect. This study demonstrated thatessential nutrients are not uniformly distributed within mangrove ecosystems;that soil fertility can switch from conditions of N to P limitation acrossnarrow ecotonal gradients; and, that not all ecological processes respondsimilarly to, or are limited by, the same nutrient.  相似文献   
117.
Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4–6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient‐poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.  相似文献   
118.
Inadequate oxygen concentration in the root zone is a constraint to plant performance particularly in heavy, compacted and/or saline soils. Sub-surface drip irrigation (SDI) offers a means of increasing oxygen to plant roots in such soils, provided irrigation water can be hyper-aerated or oxygenated. Hydrogen peroxide (HP) at the rate of 5 litre ha−1 at the end of each irrigation cycle was injected through SDI tape to a field-grown zucchini (courgette) crop (Cucurbita pepo) on a saturated heavy clay soil in Queensland, Australia. Fruit yield, number and shoot weight increased by 25%, 29% and 24% respectively due to HP treatment compared to the control. Two pot experiments with vegetable soybean (Glycine max) and cotton (Gossypium hirsutum) compared the effectiveness of HP and air injection using a Mazzei air injector (a venturi), throughout the irrigation cycle in raising crop yield in a heavy clay soil kept at saturation or just under field capacity. Fresh pod yield of vegetable soybean increased by 82–96% in aeration treatments compared with the control. The yield increase was associated with more pods per plant and greater mean pod weight. Significantly higher above ground biomass and light interception were evident with aeration, irrespective of soil water treatment. Similarly cotton lint yield increased by 14–28% in aeration treatments compared with the control. The higher lint yield was associated with more squares and bolls per plant which accompanied greater above ground biomass and an increase in root mass, root length and soil respiration. Air injection and HP effected greater water use, but also brought about an enhancement of water use efficiency (WUE) for pod and lint yield, and increased leaf photosynthetic rate in both species but had no effect on transpiration rate and stomatal conductance per unit leaf area. Aeration-induced enhanced root function was arguably responsible for greater fruit set and yield in all three crops, while in vegetable soybean greater canopy cover, radiation interception and total vegetative biomass were responsible for additional yield benefit. Increased aeration of the root zone in heavy clay soils employing either air injection or HP proved beneficial to SDI irrigated crops, irrespective of the soil water conditions, and can add value to grower investments in SDI.  相似文献   
119.
种植密度对冬小麦根系时空分布和氮素利用效率的影响   总被引:2,自引:0,他引:2  
在大田条件下,以大穗型品种泰农18和中穗型品种山农15为材料,研究不同种植密度(泰农18:每公顷135、270、405万株;山农15:每公顷172.5、345、517.5万株)对冬小麦根系时空分布和氮素利用效率的影响.结果表明:在整个生育期,随种植密度的增加,泰农18的根长密度、根系总吸收面积和活跃吸收面积均显著增加;在生育后期,山农15的根长密度、根系总吸收面积和活跃吸收面积在种植密度为每公顷345万株时最大.泰农18的籽粒产量、氮肥吸收利用效率、氮肥偏生产力和氮素利用效率在种植密度为每公顷405万株时最高,山农15在种植密度为每公顷345万株时最高,但与种植密度为每公顷517.5万株的处理差异不显著.随种植密度的增加,冬小麦成熟期土壤硝态氮、铵态氮和无机态氮在不同土层的积累量均降低.泰农18和山农15种植密度分别为每公顷405万株和345万株时,是兼顾高产和高效利用氮素的适宜种植密度.  相似文献   
120.
覆盖材料和沟垄比对土壤水分和紫花苜蓿干草产量的影响   总被引:4,自引:0,他引:4  
为寻求半干旱黄土高原区种植紫花苜蓿的适宜覆盖材料和最佳沟垄比,采用完全随机设计布置大田试验,以传统平作为对照,研究不同垄覆盖材料(土壤结皮、生物可降解地膜和普通地膜)和不同沟垄比(沟宽:垄宽分别为60∶30、60∶45和60∶60,单位是cm)对土壤水分和紫花苜蓿干草产量等的影响。结果表明:通过对2012年和2013年紫花苜蓿生育期降雨量统计,2a平均值显示,无效降雨次数(53次)大于有效降雨次数(27次),无效降雨对总降雨量的贡献率(19%)小于有效降雨(81%)。就紫花苜蓿全生育期而言,与平作相比,SR_(30)、SR_(45)、SR_(60)、BMR_(30)、BMR_(45)、BMR_(60)、CMR_(30)、CMR_(45)和CMR_(60)(SR、BMR和CMR分别代表土垄、生物可降解膜垄和普通膜垄,下标分别表示垄宽为30、45cm和60cm)连续2a的平均根层(0—140 cm)土壤贮水量分别提高12.8、19.2、24.4、26.0、30.7、40.5、29.9、37.1 mm和47.7 mm。垄沟集雨种植第1年龄和第2年龄紫花苜蓿根层没有出现明显干层。与平作相比,SR_(30)、SR_(45)和SR_(60)的连续2a紫花苜蓿平均实际干草产量分别降低3%、8%和13%,WUE分别提高52%、58%和55%;BMR_(30)、BMR_(45)、BMR_(60)、CMR_(30)、CMR_(45)和CMR_(60)的连续2a紫花苜蓿平均实际干草产量分别提高14%、12%、7%、17%、19%和9%,WUE分别提高49%、62%、59%、51%、67%和56%。当紫花苜蓿生育期降雨量为380.7—427.6 mm和沟垄比为60 cm∶35—36 cm时,生物可降解膜垄和普通膜垄的紫花苜蓿实际干草产量达到最大值,为该地区垄沟集雨种植紫花苜蓿提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号