首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1802篇
  免费   50篇
  国内免费   29篇
  1881篇
  2023年   20篇
  2022年   26篇
  2021年   8篇
  2020年   24篇
  2019年   27篇
  2018年   49篇
  2017年   29篇
  2016年   22篇
  2015年   22篇
  2014年   75篇
  2013年   161篇
  2012年   56篇
  2011年   116篇
  2010年   65篇
  2009年   79篇
  2008年   82篇
  2007年   77篇
  2006年   71篇
  2005年   85篇
  2004年   39篇
  2003年   56篇
  2002年   47篇
  2001年   30篇
  2000年   33篇
  1999年   32篇
  1998年   32篇
  1997年   31篇
  1996年   18篇
  1995年   29篇
  1994年   25篇
  1993年   27篇
  1992年   24篇
  1991年   35篇
  1990年   24篇
  1989年   15篇
  1988年   26篇
  1987年   7篇
  1985年   34篇
  1984年   35篇
  1983年   19篇
  1982年   32篇
  1981年   30篇
  1980年   23篇
  1979年   17篇
  1978年   11篇
  1977年   11篇
  1976年   15篇
  1975年   9篇
  1974年   7篇
  1973年   4篇
排序方式: 共有1881条查询结果,搜索用时 15 毫秒
201.
We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids.  相似文献   
202.
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein–lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   
203.
Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca2+, K+, and H+, respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial species. Though our protocols have been optimized for S. pneumoniae, we believe these approaches should form an excellent starting-point for similar studies in other bacterial species.  相似文献   
204.
Epidemiologic studies have shown that low-density lipoprotein cholesterol (LDL-C) is a strong risk factor, whilst high-density lipoprotein cholesterol (HDL-C) reduces the risk of coronary heart disease (CHD). Therefore, strategies to manage dyslipidemia in an effort to prevent or treat CHD have primarily attempted at decreasing LDL-C and raising HDL-C levels. Cholesteryl ester transfer protein (CETP) mediates the exchange of cholesteryl ester for triglycerides between HDL and VLDL and LDL. We have published the first report indicating that a group of Japanese patients who were lacking CETP had extremely high HDL-C levels, low LDL-C levels and a low incidence of CHD. Animal studies, as well as clinical and epidemiologic evidences, have suggested that inhibition of CETP provides an effective strategy to raise HDL-C and reduce LDL-C levels. Four CETP inhibitors have substantially increased HDL-C levels in dyslipidemic patients. This review will discuss the current status and future prospects of CETP inhibitors in the treatment of CHD. At present anacetrapib by Merck and evacetrapib by Eli Lilly are under development. By 100mg of anacetrapib HDL-C increased by 138%, and LDL-C decreased by 40%. Evacetrapib 500 mg also showed dramatic 132% increase of HDL-C, while LDL-C decreased by 40%. If larger, long-term, randomized, clinical end point trials could corroborate other findings in reducing atherosclerosis, CETP inhibitors could have a significant impact in the management of dyslipidemic CHD patients. Inhibition of CETP synthesis by antisense oligonucleotide or small molecules will produce more similar conditions to human CETP deficiency and may be effective in reducing atherosclerosis and cardiovascular events. We are expecting the final data of prospective clinical trials by CETP inhibitors in 2015.  相似文献   
205.
The mechanisms of secretory transport through the Golgi apparatus remain an issue of debate. The precise functional importance of calcium ions (Ca2+) for intra-Golgi transport has also been poorly studied. Here, using different approaches to measure free Ca2+ concentrations in the cell cytosol ([Ca2+]cyt) and inside the lumen of the Golgi apparatus ([Ca2+]GA), we have revealed transient increases in [Ca2+]cyt during the late phase of intra-Golgi transport that are concomitant with a decline in the maximal [Ca2+]GA restoration ability. Thus, this redistribution of Ca2+ from the Golgi apparatus into the cytosol during the movement of cargo through the Golgi apparatus appears to have a role in intra-Golgi transport, and mainly in the late Ca2+-dependent phase of SNARE-regulated fusion of Golgi compartments.  相似文献   
206.
We report here original properties of a porcine trophectoderm cell line, TBA B4-3, that developed a polarized phenotype with high transepithelial electrical resistance (TER) values and functional tight junctions (TJs) when grown on a microporous membrane. We found that treatment of polarized TBA B4-3 cells with a strong protein kinase C (PKC) agonist, phorbol 12-myristate-13-acetate (PMA), induced 3-4 days later a transient interferon-gamma (IFN-gamma) mRNA expression and vectorial IFN-gamma protein secretion toward the apical side of the monolayer. Exposure of TBA B4-3 cells to PMA first resulted in a rapid and profound disorganization of the monolayer structure mainly characterized by the appearance of multilayered polyp-like foci structures, a strong decrease of the TER, and a increase of permeability correlated with changes in the organization and localization of the TJ-associated proteins (ZO-1 and occludin) and filamentous actin (f-actin). After PMA removal, spontaneous return to the initial polarized monolayer state occurred, characterized by TER rising to prestimulation values, TJ protein relocalization, and multilayered cell structures fading. This return was strictly correlated with transient IFN-gamma gene induction. Our report represents the first example of an inducible expression of IFN-gamma by a polarized epithelial cell. After PMA treatment, the close correlation between establishment of cell polarity and IFN-gamma gene expression suggests a link between these phenomena. This also suggests a novel biological mechanism by which transient and reversible disorganization of a polarized monolayer of epithelial cells could trigger regulated expression of a cytokine gene by these cells.  相似文献   
207.
ABSTRACT

Cancer is a common cause of death worldwide. Approximately 80% of cancer patients use complementary or alternative medicines for treatment. Caffeic acid phenethyl ester (CAPE), the main active component of propolis, exhibits cytotoxic, antiproliferative and anti-cancer effects. Despite its anticancer effects CAPE exhibits no known harmful effects toward normal cells. We investigated the effects of CAPE on angiogenesis, apoptosis and oxidative stress using MDA MB-231, N2a and COLO 320 cell lines and CAPE treatments at 24 and 48 h. A two dimensional cell culture system was used and the findings were evaluated by an indirect immunohistochemical method and H-scores were calculated. CAPE was effective for all three cancer cell lines. After 24 and 48 h, we found a significant decrease in live cells and increased stress in the cells based on e-NOS and i-NOS levels.  相似文献   
208.
Lipases are enzymes that usually hydrolyze acylglycerols, but will hydrolyze the carboxylic esters in many other compounds. They also catalyze esteriftcations and transesterifications. In addition to specificity for carboxylic esters, the lipases are selective for lipid classes and show selectivity for primary vs. secondary alcohols (positional or regio-), fatty acids, enantiomers (chirality of either the acid or alcohol residue) and combinations of these. Uses of the enzymes have depended to some extent on regio- and fatty acid selectivities. Newer applications, such as ester synthesis and asymmetric hydrolysis, may not be based on selectivities. Factors affecting selectivities are discussed and some areas for research are mentioned.  相似文献   
209.
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号