首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   5篇
  2013年   10篇
  2012年   15篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1998年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有121条查询结果,搜索用时 125 毫秒
31.
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) helps control various endolysosome functions including organelle morphology, membrane recycling, and ion transport. Further highlighting its importance, PtdIns(3,5)P2 misregulation leads to the development of neurodegenerative diseases like Charcot-Marie-Tooth disease. The Fab1/PIKfyve lipid kinase phosphorylates PtdIns(3)P into PtdIns(3,5)P2 whereas the Fig4/Sac3 lipid phosphatase antagonizes this reaction. Interestingly, Fab1 and Fig4 form a common protein complex that coordinates synthesis and degradation of PtdIns(3,5)P2 by a poorly understood process. Assembly of the Fab1 complex requires Vac14/ArPIKfyve, a multimeric scaffolding adaptor protein that coordinates synthesis and turnover of PtdIns(3,5)P2. However, the properties and function of Vac14 multimerization remain mostly uncharacterized. Here we identify several conserved C-terminal motifs on Vac14 required for self-interaction and provide evidence that Vac14 likely forms a dimer. We also show that monomeric Vac14 mutants do not support interaction with Fab1 or Fig4, suggesting that Vac14 multimerization is likely the first molecular event in the assembly of the Fab1 complex. Finally, we show that cells expressing monomeric Vac14 mutants have enlarged vacuoles that do not fragment after hyperosmotic shock, which indicates that PtdIns(3,5)P2 levels are greatly abated. Therefore, our observations support an essential role for the Vac14 homocomplex in controlling PtdIns(3,5)P2 levels.  相似文献   
32.
Autoinhibited p21-activated kinase 1 (Pak1) can be activated in vitro by the plasma membrane-bound Rho GTPases Rac1 and Cdc42 as well as by the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). Activator binding is mediated by a GTPase-binding motif and an adjacent phosphoinositide-binding motif. Whether these two classes of activators play alternative, additive, or synergistic roles in Pak1 activation is unknown, as is their contributions to Pak1 activation in vivo. To address these questions, we developed a system to mimic the membrane anchoring of Rho GTPases by creating liposomes containing both PIP2 and a Ni2+-NTA modified lipid capable of binding hexahistidine-tagged Cdc42. We find that among all biologically relevant phosphoinositides, only PIP2 is able to synergistically activate Pak1 in concert with Cdc42. Membrane binding of the kinase was highly sensitive to the spatial density of PIP2 and Pak1 demonstrated dramatically enhanced affinity for Cdc42 anchored in a PIP2 environment. To validate these findings in vivo, we utilized an inducible recruitment system to drive the ectopic synthesis of PIP2 on Golgi membranes, which normally have active Cdc42 but lack significant concentrations of PIP2. Pak1 was recruited to PIP2-containing membranes in a manner dependent on the ability of Pak1 to bind to both PIP2 and Cdc42. These findings provide a mechanistic explanation for the essential role of both phosphoinositides and GTPases in Pak1 recruitment and activation. In contrast, Ack, another Cdc42 effector kinase that lacks an analogous phosphoinositide-binding motif, fails to show the same enhancement of membrane binding and activation by PIP2, thus indicating that regulation by PIP2 and Cdc42 could provide a combinatorial code for activation of different GTPase effectors in different subcellular locations.  相似文献   
33.
Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14–19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.  相似文献   
34.
Phosphatidylinositol 4-kinases (PI 4-kinases) catalyze the conversion of phosphatidylinositol to phosphatidylinositol 4-phosphate (PtdIns4P). The four known mammalian PI 4-kinases, PI4KA, PI4KB, PI4K2A, and PI4K2B have roles in intracellular lipid and protein trafficking. PI4KA and PI4KB also assist in the replication of several positive-sense RNA viruses. The identification of selective inhibitors of these kinases would be facilitated by assays suitable for high-throughput screening. We describe a homogeneous and nonisotopic assay for PI 4-kinase activity based on the bioluminescent detection of the ADP produced by kinase reactions. We have evaluated this assay with known nonselective inhibitors of PI 4-kinases and show that it performs similar to radiometric assay formats previously described in the literature. In addition, this assay generates Z-factor values of >0.7 for PI4KA in a 384-well format, demonstrating its suitability for high-throughput screening applications.  相似文献   
35.
The Rho GTPase activating protein Rgd1 increases the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Rgd1p is a member of the F-BAR family conserved in eukaryotes; indeed, in addition to the C-terminal RhoGAP domain Rgd1p possesses an F-BAR domain at its N-terminus. Phosphoinositides discriminate between the GTPase activities of Rho3p and Rho4p through Rgd1p and specifically stimulate the RhoGAP activity of Rgd1p on Rho4p. Determining specific interactions and resolving the structure of Rgd1p should provide insight into the functioning of this family of protein. We report the preparation of highly pure and functional RhoGAP domain of Rgd1 RhoGAP domain using a high yield expression procedure. By gel filtration and circular dichroïsm we provide the first evidences for a specific interaction between a RhoGAP domain (the RhoGAP domain of Rgd1p) and phosphoinositides.  相似文献   
36.
Bias in the gradient-sensing response of chemotactic cells   总被引:1,自引:0,他引:1  
We apply linear stability theory and perform perturbation studies to better characterize, and to generate new experimental predictions from, a model of chemotactic gradient sensing in eukaryotic cells. The model uses reaction-diffusion equations to describe 3(') phosphoinositide signaling and its regulation at the plasma membrane. It demonstrates a range of possible gradient-sensing mechanisms and captures such characteristic behaviors as strong polarization in response to static gradients, adaptation to differing mean levels of stimulus, and plasticity in response to changing gradients. An analysis of the stability of polarized steady-state solutions indicates that the model is most sensitive to off-axis perturbations. This biased sensitivity is also reflected in responses to localized external stimuli, and leads to a clear experimental prediction, namely, that a cell which is polarized in a background gradient will be most sensitive to transient point-source stimuli lying within a range of angles that are oblique with respect to the polarization axis. Stimuli at angles below this range will elicit responses whose directions overshoot the stimulus angle, while responses to stimuli applied at larger angles will undershoot the stimulus angle. We argue that such a bias is likely to be a general feature of gradient sensing in highly motile cells, particularly if they are optimized to respond to small gradients. Finally, an angular bias in gradient sensing might lead to preferred turn angles and zigzag movements of cells moving up chemotactic gradients, as has been noted under certain experimental conditions.  相似文献   
37.
The yeast VAMP-associated protein (VAP) homolog Scs2p is an endoplasmic reticulum (ER)/nuclear membrane protein that binds to an FFAT (diphenylalanine in an acidic tract) motif found in various lipid-metabolic proteins, including Opi1p, a negative regulator of phospholipid biosynthesis. Here, we show that Scs2p is a novel phosphoinositide-binding protein that can bind to phosphatidylinositol monophosphates and bisphosphates in vitro. The phosphoinositide-binding domain was assigned to the N-terminal major sperm protein (MSP) domain which also contains the FFAT-binding domain. When several lysine residues in the MSP domain were substituted for alanine, the resulting mutant Scs2 proteins lost the phosphoinositide-binding ability and failed to complement the inositol auxotrophy of an scs2 deletion strain. However, the mutant proteins still localized in the ER/nuclear membrane, in a similar manner to wild-type Scs2p. These results suggest the possibility that Scs2p activity is regulated by phosphoinositides to coordinate phospholipid biosynthesis in response to changes in phospholipid composition.  相似文献   
38.
Fibroblast growth factor 2 (FGF2) is a key signaling molecule in tumor-induced angiogenesis. FGF2 is secreted by an unconventional secretory mechanism that involves phosphatidylinositol 4,5-bisphosphate-dependent insertion of FGF2 oligomers into the plasma membrane. This process is regulated by Tec kinase-mediated tyrosine phosphorylation of FGF2. Molecular interactions driving FGF2 monomers into membrane-inserted FGF2 oligomers are unknown. Here we identify two surface cysteines that are critical for efficient unconventional secretion of FGF2. They represent unique features of FGF2 as they are absent from all signal-peptide-containing members of the FGF protein family. We show that phosphatidylinositol 4,5-bisphosphate-dependent FGF2 oligomerization concomitant with the generation of membrane pores depends on FGF2 surface cysteines as either chemical alkylation or substitution with alanines impairs these processes. We further demonstrate that the FGF2 variant forms lacking the two surface cysteines are not secreted from cells. These findings were corroborated by experiments redirecting a signal-peptide-containing FGF family member from the endoplasmic reticulum/Golgi-dependent secretory pathway into the unconventional secretory pathway of FGF2. Cis elements known to be required for unconventional secretion of FGF2, including the two surface cysteines, were transplanted into a variant form of FGF4 without signal peptide. The resulting FGF4/2 hybrid protein was secreted by unconventional means. We propose that the formation of disulfide bridges drives membrane insertion of FGF2 oligomers as intermediates in unconventional secretion of FGF2.  相似文献   
39.
Membrane asymmetry is essential for generating second messengers that act in the cytosol and for trafficking of membrane proteins and membrane lipids, but the role of asymmetry in regulating membrane protein function remains unclear. Here we show that the signaling lipid phosphoinositide 4,5-bisphosphate (PI(4,5)P2) has opposite effects on the function of TRPV1 ion channels depending on which leaflet of the cell membrane it resides in. We observed potentiation of capsaicin-activated TRPV1 currents by PI(4,5)P2 in the intracellular leaflet of the plasma membrane but inhibition of capsaicin-activated currents when PI(4,5)P2 was in both leaflets of the membrane, although much higher concentrations of PI(4,5)P2 in the extracellular leaflet were required for inhibition compared with the concentrations of PI(4,5)P2 in the intracellular leaflet that produced activation. Patch clamp fluorometry using a synthetic PI(4,5)P2 whose fluorescence reports its concentration in the membrane indicates that PI(4,5)P2 must incorporate into the extracellular leaflet for its inhibitory effects to be observed. The asymmetry-dependent effect of PI(4,5)P2 may resolve the long standing controversy about whether PI(4,5)P2 is an activator or inhibitor of TRPV1. Our results also underscore the importance of membrane asymmetry and the need to consider its influence when studying membrane proteins reconstituted into synthetic bilayers.  相似文献   
40.
Group IVα phospholipase A(2) (PLA(2)IVα) is a lipolytic enzyme that catalyzes the hydrolysis of membrane phospholipids to generate precursors of potent inflammatory lipid mediators. Here, the role of PLA(2)IVα in Fc receptor (FcR)-mediated phagocytosis was investigated, demonstrating that PLA(2)IVα is selectively activated upon FcR-mediated phagocytosis in macrophages and that it rapidly translocates to the site of the nascent phagosome. Moreover, pharmacological inhibition of PLA(2)IVα by pyrrophenone reduces particle internalization by up to 50%. In parallel, fibroblasts from PLA(2)IVα knock-out mice overexpressing FcγRIIA and able to internalize IgG-opsonized beads show 50% lower phagocytosis, compared with wild-type cells, and transfection of PLA(2)IVα fully recovers this impaired function. Interestingly, transfection of the catalytically inactive deleted PLA(2)IVα mutant (PLA(2)IVα(1-525)) and point mutant (PLA(2)IVα-S228C) also promotes recovery of this impaired function. Finally, transfection of the PLA(2)IVα C2 domain (which is directly involved in PLA(2)IVα membrane binding), but not of PLA(2)IVα-D43N (which cannot bind to membranes), rescues FcR-mediated phagocytosis. These data unveil a new mechanism of action for PLA(2)IVα, which demonstrates that the membrane binding, and not the enzymatic activity, is required for PLA(2)IVα modulation of FcR-mediated phagocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号