首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   5篇
  2013年   10篇
  2012年   15篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1998年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有121条查询结果,搜索用时 156 毫秒
101.
Phosphatidylinositol 4-kinase IIα (PI4KIIα) is predominantly Golgi-localized, and it generates >50% of the phosphatidylinositol 4-phosphate in the Golgi. The lipid kinase activity, Golgi localization, and "integral" membrane binding of PI4KIIα and its association with low buoyant density "raft" domains are critically dependent on palmitoylation of its cysteine-rich (173)CCPCC(177) motif and are also highly cholesterol-dependent. Here, we identified the palmitoyl acyltransferases (Asp-His-His-Cys (DHHC) PATs) that palmitoylate PI4KIIα and show for the first time that palmitoylation is cholesterol-dependent. DHHC3 and DHHC7 PATs, which robustly palmitoylated PI4KIIα and were colocalized with PI4KIIα in the trans-Golgi network (TGN), were characterized in detail. Overexpression of DHHC3 or DHHC7 increased PI4KIIα palmitoylation by >3-fold, whereas overexpression of the dominant-negative PATs or PAT silencing by RNA interference decreased PI4KIIα palmitoylation, "integral" membrane association, and Golgi localization. Wild-type and dominant-negative DHHC3 and DHHC7 co-immunoprecipitated with PI4KIIα, whereas non-candidate DHHC18 and DHHC23 did not. The PI4KIIα (173)CCPCC(177) palmitoylation motif is required for interaction because the palmitoylation-defective SSPSS mutant did not co-immunoprecipitate with DHHC3. Cholesterol depletion and repletion with methyl-β-cyclodextrin reversibly altered PI4KIIα association with these DHHCs as well as PI4KIIα localization at the TGN and "integral" membrane association. Significantly, the Golgi phosphatidylinositol 4-phosphate level was altered in parallel with changes in PI4KIIα behavior. Our study uncovered a novel mechanism for the preferential recruitment and activation of PI4KIIα to the TGN by interaction with Golgi- and raft-localized DHHCs in a cholesterol-dependent manner.  相似文献   
102.
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.  相似文献   
103.
Here, Drs2p, a yeast lipid translocase that belongs to the family of P(4)-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-(32)P]ATP of a (32)P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p. It was inhibited by orthovanadate and fluoride compounds. In crude membranes, the phosphoenzyme formed at steady state at 4 °C displayed ADP-insensitive but temperature-sensitive decay. Solubilizing concentrations of dodecyl maltoside left this decay rate almost unaltered, whereas several other detergents accelerated it. Unexpectedly, the dephosphorylation rate for the solubilized Drs2p·Cdc50p complex was inhibited by the addition of phosphatidylserine. Phosphatidylserine exerted its anticipated accelerating effect on the dephosphorylation of Drs2p·Cdc50p complex only in the additional presence of phosphatidylinositol-4-phosphate. These results explain why phosphatidylinositol-4-phosphate tightly controls Drs2p-catalyzed lipid transport and establish the functional relevance of the Drs2p·Cdc50p complex overexpressed here.  相似文献   
104.
Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate.  相似文献   
105.
A murine IgG mAb, WR321, selected for the ability to bind to phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate, but an inability to bind to any of 17 other lipids, including phosphatidylinositol, was examined as a probe for studying interactions of HIV-1 with primary human peripheral blood mononuclear cells. The WR321 mAb broadly neutralized CCR5-tropic strains of HIV-1 to prevent infection of the cells. The mAb also exhibited direct interaction with cells in the culture, resulting in secretion of chemokines that interfered with the interaction of HIV-1 virions with CCR5, the coreceptor for HIV-1 on the susceptible cells, leading to inhibition of infection by HIV-1. Phosphoinositides that are recognized by WR321 do not exist on the external surface of cells, but are concentrated on the inner surface (cytoplasmic leaflet) of the plasma membrane. Murine anti-phosphoinositide mAbs similar to WR321 have previously been directly microinjected into a variety of cultured cells, resulting in important changes in the functions of the cells. The present results suggest that binding of a mAb to phosphoinositides, resulting in secretion of β-chemokines into the culture medium and neutralization of infection by CCR5-tropic HIV-1 of nearby susceptible cells, occurred by uptake and binding of the mAb at an intracellular location in the cultured cells that then led to secretion of HIV-1-inhibitory β-chemokines.  相似文献   
106.
The effects of in vivo electrical stimulation of the sympathetic nerve of the eye on phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis in rabbit iris and release of arachidonate and prostaglandin (PG) E2 into aqueous humor were investigated. myo-[3H]Inositol or [1-14C]arachidonate was injected intracamerally into each eye 3 h before electrical stimulation of one of the sympathetic trunks. Tissue phosphoinositides were determined by TLC, and 3H-labeled inositol phosphates were analyzed by either ion-exchange chromatography or HPLC. The aqueous humor was analyzed for 14C-labeled arachidonate and PGE2 by radiochromatography and for unlabeled PGE2 by radioimmunoassay. The results obtained from this study can be summarized as follows: (a) The rates of in vivo incorporation of myo-[3H]inositol into phosphoinositides and accumulation of 3H-labeled inositol phosphates in the iris muscle increased with time and then leveled off between 3 and 5 h. (b) Distribution of 3H radioactivity in inositol phosphates, as determined by HPLC, showed that of the total radioactivity in inositol phosphates, 53.6% was recovered in myo-inositol 1-phosphate, 36% in myo-inositol bisphosphate, 0.95% in myo-inositol 1,3,4-trisphosphate (1,3,4-IP3), and 2.6% in 1,4,5-IP3. (c) Electrical stimulation of the sympathetic nerve resulted in a significant loss of 3H radioactivity from PIP2 and a concomitant increase of that in IP3, an observation indicating that PIP2 is the physiological substrate for alpha 1-adrenergic receptors in this tissue. (d) Release of IP3 and liberation of arachidonate for PGE2 synthesis are dependent on the duration of stimulation and the intensity (voltage) of stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
107.
The administration of LiCl (3.6 mequiv./kg/day) to adult male rats for 9 days results in an increase in the cerebral cortex level of myo-inositol-1-phosphate (M1P) to 4.43 +/- 0.52 mmol/kg (dry weight) compared with a control level of 0.24 +/- 0.02 mmol/kg. This establishes that the previously observed acute effect of lithium on M1P (Allison et al., 1976) is both prolonged and augmented by repeated doses of lithium. Larger doses of LiCl over a 3-5 day period result in even larger increases in M1P and a 35% decrease in myo-inositol. In each case, 90% of the increase is due to the D-enantiomer, evidence that lithium is largely producing this effect via phospholipase C-mediated phosphoinositide metabolism. Data are presented showing that lithium is an uncompetitive inhibitor of the hydrolysis of both D- and L-M1P by M1P'ase.  相似文献   
108.
Summary There is increasing evidence that nuclear lipid metabolism in NEST is an important new component in signal transducing networks and as a result, this metabolism is beginning to attract more attention. While agonistinduced nuclear lipid metabolism adds further complexity to the ever increasing array of signal transduction components, it also provides further avenues by which nuclear activities may be regulated. Identification of the coupling mechanisms, regulation, and physiological roles of nuclear lipid metabolism represents a new and exciting area of research which will have a broad impact in our understanding of signal transduction pathways.  相似文献   
109.
Phosphoinositide signaling disorders in human diseases   总被引:12,自引:0,他引:12  
Phosphoinositides (PIs) play an essential role in diverse cellular functions. Their intracellular level is strictly regulated by specific PI kinases, phosphatases and phospholipases. Recent discoveries indicate that dysfunctions in the control of their level often lead to pathologies. This review will focus on some human diseases whose etiologies involve PI-metabolizing enzymes. The role of PTEN (phosphatase and tensin homolog deleted on chromosome ten) in cancer, the impact of the Src homology 2-containing inositol-5-phosphatase phosphatases in acute myeloid leukemia or diabetes, the involvement of myotubularin family members in genetic diseases and the implication of OCRL1 in Lowe syndrome will be emphasized. We will also review how some bacterial pathogens have evolved strategies to specifically manipulate the host cell PI metabolism to efficiently infect them.  相似文献   
110.
Heptachlor is a persistent organochlorine insecticide that has been detected in human tissues and fluids. The ability of heptachlor to interfere with platelet phosphoinositides metabolism and related signaling events stimulated by thrombin was evaluated. In vitro incubations with a concentration range of 1-100 microM heptachlor, prior to platelets activation, were performed. Experiments showed that 10 microM increased protein Kinase C (PKC) activity and phosphatidylinositolbiphosphate and phosphatidic acid phosphorylation. Simultaneously phosphatidylcholine and phosphatidylethanolamine breakdown were prevented. Similar effects were observed with HC 1 microM. However, heptachlor 100 microM increased phosphatidylinositolbiphosphate phosphorylation but reduced serine/threonine kinases activity. We propose that signal transduction steps downstream phospholipase C (PLC) are unphysiologically activated by heptachlor and facilitated by the increase in phosphatidylinositolbiphosphate, the substrate for PLC activity, thus producing an accumulation of phosphatidic acid. The elevated level of this compound itself or the transient increase in diacylglycerol produced may cause calcium mobilization and the activation of PKC. In contrast with the alterations observed in phospholipids and protein phosphorylation, no changes in aggregation properties were observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号