首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1985篇
  免费   77篇
  国内免费   36篇
  2098篇
  2024年   4篇
  2023年   26篇
  2022年   43篇
  2021年   46篇
  2020年   37篇
  2019年   36篇
  2018年   44篇
  2017年   27篇
  2016年   30篇
  2015年   35篇
  2014年   101篇
  2013年   91篇
  2012年   49篇
  2011年   68篇
  2010年   86篇
  2009年   103篇
  2008年   77篇
  2007年   102篇
  2006年   86篇
  2005年   72篇
  2004年   65篇
  2003年   55篇
  2002年   62篇
  2001年   42篇
  2000年   42篇
  1999年   26篇
  1998年   31篇
  1997年   35篇
  1996年   15篇
  1995年   25篇
  1994年   24篇
  1993年   16篇
  1992年   23篇
  1991年   29篇
  1990年   17篇
  1989年   22篇
  1988年   24篇
  1987年   22篇
  1986年   7篇
  1985年   21篇
  1984年   56篇
  1983年   68篇
  1982年   56篇
  1981年   53篇
  1980年   44篇
  1979年   37篇
  1978年   6篇
  1977年   4篇
  1975年   2篇
  1974年   3篇
排序方式: 共有2098条查询结果,搜索用时 15 毫秒
991.
In humans, defects in peroxisome biogenesis are the cause of lethal diseases typified by Zellweger syndrome. Here, we show that inactivating mutations in human PEX3 cause Zellweger syndrome, abrogate peroxisome membrane synthesis, and result in reduced abundance of peroxisomal membrane proteins (PMPs) and/or mislocalization of PMPs to the mitochondria. Previous studies have suggested that PEX3 may traffic through the ER en route to the peroxisome, that the COPI inhibitor, brefeldin A, leads to accumulation of PEX3 in the ER, and that PEX3 overexpression alters the morphology of the ER. However, we were unable to detect PEX3 in the ER at early times after expression. Furthermore, we find that inhibition of COPI function by brefeldin A has no effect on trafficking of PEX3 to peroxisomes and does not inhibit PEX3-mediated peroxisome biogenesis. We also find that inhibition of COPII-dependent membrane traffic by a dominant negative SAR1 mutant fails to block PEX3 transport to peroxisomes and PEX3-mediated peroxisome synthesis. Based on these results, we propose that PEX3 targeting to peroxisomes and PEX3-mediated peroxisome membrane synthesis may occur independently of COPI- and COPII-dependent membrane traffic.  相似文献   
992.
Steinernema spp. third-stage infective juveniles (IJs) play a key role in the symbiotic partnership between these entomopathogenic nematodes and Xenorhabdus bacteria. Recent studies suggest that Steinernema carpocapsae IJs contribute to the nutrition and growth of their symbionts in the colonization site (vesicle) [Martens, E.C. and Goodrich-Blair, H., 2005. The S. carpocapsae intestinal vesicle contains a sub-cellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cellular Microbiol. 7, 1723-1735.]. However, the morphological and physiological interactions between Xenorhabdus symbionts and Steinernema IJs are not understood in depth. This study was undertaken to assess the influence of culture conditions and IJ age on the structure, nutrition, and symbiont load (colonization level) of S. carpocapsae vesicles. Our observations indicate the vesicles of axenic IJs are shorter and wider than those of colonized IJs. Moreover, as colonized IJs age the vesicle becomes shorter and narrower and bacterial load declines. The colonization proficiency of several bacterial metabolic mutants was compared between two cultivation conditions: in vitro on lipid agar and in vivo in Galleria mellonella insects. Colonization defects were generally less severe in IJs cultivated in vivo versus those cultivated in vitro. However, IJs from both cultivation conditions exhibited similar declining bacterial load over time. These results suggest that although the vesicle forms in the absence of bacteria, the presence of symbionts within the vesicle may influence its fine structure. Moreover, these studies provide further evidence in support of the concept that the conditions under which steinernematid nematodes are cultivated and stored affect the nutritive content of the vesicle and the bacterial load, and therefore have an impact on the quality of the nematodes for their application as biological control agents.  相似文献   
993.
It is generally assumed that preprotein substrates must be presented in an unfolded state to the bacterial Sec-translocase in order to be translocated. Here, we have examined the ability of the Sec-translocase to translocate folded preproteins. Tightly folded human cardiac Ig-like domain I27 fused to the C terminus of proOmpA is translocated efficiently by the Sec-translocase and the translocation kinetics are determined by the extent of folding of the titin I27 domain. Accumulation of specific translocation intermediates around the fusion point that undergo translocation progress upon ATP binding suggests that the motor protein SecA plays an important and decisive role in promoting unfolding of the titin I27 domain. It is concluded that the bacterial Sec-translocase is capable of actively unfolding preproteins.  相似文献   
994.
Amphiphysin 1 (amph 1) is an endocytic protein enriched in the nerve terminals that functions in the clathrin-mediated endocytosis. It acts as membrane curvature sensor, a linker of clathrin coat proteins, and an enhancer of dynamin Guanosine Triphosphatase (GTPase) activity. Amph 1 undergoes phosphorylation by cyclin-dependent kinase 5 (Cdk5), at five phosphorylation sites, serine 262, 272, 276, 285, and threonine 310, as determined by mass spectrometry (MS). We show here that Cdk5-dependent phosphorylation of amph 1 is enhanced in the presence of lipid membranes. Analysis by tandem liquid chromatograph MS revealed that the phosphorylation occurs at two phosphorylation sites. The phosphorylation was markedly decreased by mutation either Ser276 or Ser285 of amph 1 to alanine (S276A and S285A). Furthermore, mutation of both sites (S276, 285A) completely eliminated the phosphorylation. Functional studies indicated that binding of amph 1 to lipid membrane was attenuated by Cdk5-dependent phosphorylation of wild type amph 1, but not of the S276, 285A form. Interestingly, endocytosis was increased in rat pheochromocytoma cells expressing amph 1 S276, 285A in comparison with wild type. These results suggest that Ser276 and Ser285 are regulatory Cdk5 phosphorylation sites of amph 1 in the lipid-bound state. Phosphorylation at these sites alters binding of amph 1 to lipid membranes, and may be an important regulatory aspect in the regulation of synaptic vesicle endocytosis.  相似文献   
995.
996.
ObjectivesBotulinum neurotoxins are highly potent biological warfare agents. The unavailability of countermeasures against these neurotoxins has been a matter of extensive research. However, no clinical therapeutics has come to existence till date. The 8-hydroxyquinoline (8-HQ) scaffold is established privileged compound and its potential as drug candidate against BoNTs is recently being explored.MethodsIn present work, three course studies were performed involving in silico, in vitro and in vivo cascade to screen 8-HQ small molecule inhibitors against BoNT/F intoxication. ~800 molecules obtained from open repositories were screened in silico and commercially obtained twenty-four 8-HQ derived small molecule inhibitors were evaluated against rBoNT/F light chain through fluorescence thermal shift (FTS) assay. Selected compounds were further evaluated through endopeptidase assay. Further binding affinity analysis was done through surface plasmon resonance (SPR) based Proteon™ XPR 36 system. Finally, the in vivo efficacy of these compounds was evaluated in mice model.ResultsThree compounds NSC1011, NSC1014 and NSC84094 were found to be highly inhibitory after screening of 8-HQ compounds through FTS assay and endopeptidase assay. SPR based protein-small molecule interaction studies showed highest affinity binding of NSC1014 (KD: 5.58E-06) with BoNT/F-LC. NSC1011, NSC1014, and NSC84094 displayed IC50 of 30.47 ± 6.24, 14.91 ± 2.49 and 17.39 ± 2.74 μM, respectively, in endopeptidase assay. NSC1011 and NSC1014 displayed marked extension of survival time in mice model.ConclusionNSC1011 and NSC1014 have emerged as promising drug candidate against BoNT/F intoxication displaying higher potential than previously reported compounds.  相似文献   
997.
The interactions of three therapeutic agents, viz. the antipsychotics HPD and CPZ, and the antineoplastic anthracycline DOX, with oxidatively modified phospholipids were studied by monitoring the quenching of fluorescence of an incorporated pyrene-labeled lipid derivative. All three drugs bound avidly to the two oxidized PCs bearing either an aldehyde or carboxylic function at the end of the sn-2 nonanoyl chain, with the highest affinity measured between CPZ and the latter oxidized lipid. Subsequent dissociation of the above drugs from the oxidized lipids by DNA, acidic phospholipids, and NaCl revealed the binding of these drugs with the aldehyde lipid to be driven by hydrophobicity similarly to their binding to lysophosphatidylcholine, whereas a significant contribution of electrostatics was evident for the lipid with the carboxylic moiety. These results connect to previous experimental data, demonstrating the induction by these drugs of oxidative stress and binding to membrane phospholipids. These issues are elaborated with reference to their clinical use and side effects.  相似文献   
998.
The phosphatidylcholine preferring phospholipase C from Bacillus cereus (PC-PLC(Bc)) catalyzes the hydrolysis of phospholipids in the following order of preference: phosphatidylcholine (PC)>phosphatidylethanolamine (PE)>phosphatidylserine (PS). In previous work, mutagenic, kinetic, and crystallographic experiments suggested that varying the amino acids at the 4th, 56th, and 66th positions had a significant influence upon the substrate specificity profile of PC-PLC(Bc). Here, we report the crystal structures of the native form of several PC-PLC(Bc) variants that exhibited altered substrate specificities for PC, PE, and PS at maximum resolutions of 1.90-2.05 Angstrom. Comparing the structures of these variants to the structure of the wild-type enzyme reveals only minor differences with respect to the number and location of active site water molecules and the side chain conformations of residues at the 4th and 56th positions. These results suggest that subtle changes in steric and electronic properties in the substrate binding site of PC-PLC(Bc) are responsible for the significant changes in substrate selectivity.  相似文献   
999.
Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from non‐specific effects after cholesterol manipulation. Furthermore, it remains unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole‐cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase or methyl‐β‐cyclodextrin impaired three different forms of endocytosis, including slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of methyl‐β‐cyclodextrin reduced exocytosis, mainly by decreasing the readily releasable pool and the vesicle replenishment after readily releasable pool depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses.

  相似文献   

1000.
Activity‐dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity‐dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine‐dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium‐dependent events such as activity‐dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity‐dependent dynamin I dephosphorylation was also arrested in EGTA‐treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号