首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1981篇
  免费   77篇
  国内免费   36篇
  2024年   4篇
  2023年   26篇
  2022年   39篇
  2021年   46篇
  2020年   37篇
  2019年   36篇
  2018年   44篇
  2017年   27篇
  2016年   30篇
  2015年   35篇
  2014年   101篇
  2013年   91篇
  2012年   49篇
  2011年   68篇
  2010年   86篇
  2009年   103篇
  2008年   77篇
  2007年   102篇
  2006年   86篇
  2005年   72篇
  2004年   65篇
  2003年   55篇
  2002年   62篇
  2001年   42篇
  2000年   42篇
  1999年   26篇
  1998年   31篇
  1997年   35篇
  1996年   15篇
  1995年   25篇
  1994年   24篇
  1993年   16篇
  1992年   23篇
  1991年   29篇
  1990年   17篇
  1989年   22篇
  1988年   24篇
  1987年   22篇
  1986年   7篇
  1985年   21篇
  1984年   56篇
  1983年   68篇
  1982年   56篇
  1981年   53篇
  1980年   44篇
  1979年   37篇
  1978年   6篇
  1977年   4篇
  1975年   2篇
  1974年   3篇
排序方式: 共有2094条查询结果,搜索用时 15 毫秒
101.
Meningococcal disease is a global problem. Multivalent (A, C, Y, W135) conjugate vaccines have been developed and licensed; however, an effective vaccine against serogroup B has not yet become available. Outer membrane vesicle (OMV) vaccines have been used to disrupt serogroup B epidemics and outbreaks. Postgenomic technologies have been useful in aiding the discovery of new protein vaccine candidates. Moreover, proteomic technologies enable large-scale identification of membrane and surface-associated proteins, and provide suitable methods to characterize and standardize the antigen composition of OMV-based vaccines.  相似文献   
102.
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis.  相似文献   
103.
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine‐nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase‐activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase‐activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness .   相似文献   
104.
Checkpoint kinase 1 (Chk1) plays key roles in all currently defined cell cycle checkpoints, but its functions in mouse oocyte meiosis remain unclear. In this study, we report the expression, localization and functions of Chk1 in mouse oocyte meiosis. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages and localized to the spindle from pro-metaphase I (pro-MI) to MII stages in mouse oocytes. Chk1 depletion facilitated the G2/M transition while Chk1 overexpression inhibited the G2/M transition as indicated by germinal vesicle breakdown (GVBD), through regulation of Cdh1 and Cyclin B1. Chk1 depletion did not affect meiotic cell cycle progression after GVBD, but its overexpression after GVBD activated the spindle assembly checkpoint and prevented homologous chromosome segregation, thus arresting oocytes at pro-MI or metaphase I (MI) stages. These results suggest that Chk1 is indispensable for prophase I arrest and functions in G2/M checkpoint regulation in meiotic oocytes. Moreover, Chk1 overexpression affects meiotic spindle assembly checkpoint regulation and thus chromosome segregation.  相似文献   
105.
106.
Components of the vesicle trafficking machinery are central to the immune response in plants. The role of vesicle trafficking during pre-invasive penetration resistance has been well documented. However, emerging evidence also implicates vesicle trafficking in early immune signaling. Here we report that Exo70B1, a subunit of the exocyst complex which mediates early tethering during exocytosis is involved in resistance. We show that exo70B1 mutants display pathogen-specific immuno-compromised phenotypes. We also show that exo70B1 mutants display lesion-mimic cell death, which in combination with the reduced responsiveness to pathogen-associated molecular patterns (PAMPs) results in complex immunity-related phenotypes.  相似文献   
107.
108.
109.
The direct visualization of subcellular dynamic processes is often hampered by limitations in the resolving power achievable with conventional microscopy techniques. Fluorescence recovery after photobleaching has emerged as a highly informative approach to address this challenge, permitting the quantitative measurement of the movement of small organelles and proteins in living functioning cells, and offering detailed insights into fundamental cellular phenomena of physiological importance. In recent years, its implementation has benefited from the increasing availability of confocal microscopy systems and of powerful labeling techniques based on genetically encoded fluorescent proteins or other chemical markers. In this review, we present fluorescence recovery after photobleaching and related techniques in the context of contemporary neurobiological research and discuss quantitative and semi‐quantitative approaches to their interpretation.  相似文献   
110.
The members of the NR5A subfamily of nuclear receptors (NRs) are important regulators of pluripotency, lipid and glucose homeostasis, and steroidogenesis. Liver receptor homologue 1 (LRH-1; NR5A2) and steroidogenic factor 1 (SF-1; NR5A1) have therapeutic potential for the treatment of metabolic and neoplastic disease; however, a poor understanding of their ligand regulation has hampered the pursuit of these proteins as pharmaceutical targets. In this study, we dissect how sequence variation among LRH-1 orthologs affects phospholipid (PL) binding and regulation. Both human LRH-1 (hLRH-1) and mouse LRH-1 (mLRH-1) respond to newly discovered medium chain PL agonists to modulate lipid and glucose homeostasis. These PLs activate hLRH-1 by altering receptor dynamics in a newly identified alternate activation function region. Mouse and Drosophila orthologs contain divergent sequences in this region potentially altering PL-driven activation. Structural evidence suggests that these sequence differences in mLRH-1 and Drosophila FTZ-f1 (dmFTZ-f1) confer at least partial ligand independence, making them poor models for hLRH-1 studies; however, the mechanisms of ligand independence remain untested. We show using structural and biochemical methods that the recent evolutionary divergence of the mLRH-1 stabilizes the active conformation in the absence of ligand, yet does not abrogate PL-dependent activation. We also show by mass spectrometry and biochemical assays that FTZ-f1 is incapable of PL binding. This work provides a structural mechanism for the differential tuning of PL sensitivity in NR5A orthologs and supports the use of mice as viable therapeutic models for LRH-1-dependent diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号