首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2302篇
  免费   130篇
  国内免费   121篇
  2024年   8篇
  2023年   53篇
  2022年   83篇
  2021年   121篇
  2020年   105篇
  2019年   100篇
  2018年   104篇
  2017年   51篇
  2016年   47篇
  2015年   124篇
  2014年   162篇
  2013年   167篇
  2012年   85篇
  2011年   111篇
  2010年   70篇
  2009年   125篇
  2008年   112篇
  2007年   119篇
  2006年   81篇
  2005年   76篇
  2004年   64篇
  2003年   57篇
  2002年   56篇
  2001年   36篇
  2000年   32篇
  1999年   28篇
  1998年   28篇
  1997年   15篇
  1996年   23篇
  1995年   19篇
  1994年   18篇
  1993年   15篇
  1992年   20篇
  1991年   16篇
  1990年   12篇
  1989年   17篇
  1988年   15篇
  1987年   11篇
  1986年   13篇
  1985年   13篇
  1984年   36篇
  1983年   15篇
  1982年   25篇
  1981年   20篇
  1980年   9篇
  1979年   12篇
  1978年   4篇
  1977年   8篇
  1976年   4篇
  1975年   4篇
排序方式: 共有2553条查询结果,搜索用时 37 毫秒
81.
82.
《遗传学报》2021,48(9):763-770
Innate lymphoid cells (ILCs) are a group of innate immune cells, which constitute the first line of defense in the immune system, together with skin and mucous membrane. ILCs also play an important role in maintaining the homeostasis of the body, particularly in the complex and diverse environment of the intestine. ILCs respond to different microenvironments, maintaining homeostasis directly or indirectly through cytokines. As a result, ILCs, with complex and pleiotropic characteristics, are associated with many gastrointestinal diseases. Their ability of transition among those subgroups makes them function as both promoting and inhibiting cells, thus affecting homeostasis and disease progressing to either alleviation or deterioration. With these special characteristics, ILCs theoretically can be used in the new generation of immunotherapy as an alternative and supplement to current tumor therapy. Our review summarizes the characteristics of ILCs with respect to category, function, and the relationship with intestinal homeostasis and gastrointestinal diseases. In addition, potential tumor immunotherapies involving ILCs are also discussed to shed light on the perspectives of immunotherapy.  相似文献   
83.
The intestinal barrier dysfunction is crucial for the development of liver fibrosis but can be disturbed by intestinal chronic inflammation characterized with cyclooxygenase-2 (COX-2) expression. This study focused on the unknown mechanism by which COX-2 regulates intestinal epithelial homeostasis in liver fibrosis. The animal models of liver fibrosis induced with TAA were established in rats and in intestinal epithelial–specific COX-2 knockout mice. The impacts of COX-2 on intestinal epithelial homeostasis via suppressing β-catenin signalling pathway were verified pharmacologically and genetically in vivo. A similar assumption was tested in Ls174T cells with goblet cell phenotype in vitro. Firstly, disruption of intestinal epithelial homeostasis in cirrhotic rats was ameliorated by celecoxib, a selective COX-2 inhibitor. Then, β-catenin signalling pathway in cirrhotic rats was associated with the activation of COX-2. Furthermore, intestinal epithelial–specific COX-2 knockout could suppress β-catenin signalling pathway and restore the disruption of ileal epithelial homeostasis in cirrhotic mice. Moreover, the effect of COX-2/PGE2 was dependent on the β-catenin signalling pathway in Ls174T cells. Therefore, inhibition of COX-2 may enhance intestinal epithelial homeostasis via suppression of the β-catenin signalling pathway in liver fibrosis.  相似文献   
84.
Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1fl/fl; OcnCre/+) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span.  相似文献   
85.
86.
《Free radical research》2013,47(9):1069-1080
Abstract

Disruption of neuronal iron homeostasis and oxidative stress are closely related to the pathogenesis of Parkinson's disease (PD). Ginkgetin, a natural biflavonoid isolated from leaves of Ginkgo biloba L, has many known effects, including anti-inflammatory, anti-influenza virus, and anti-fungal activities, but its underlying mechanism of the neuroprotective effects in PD remains unclear. The present study utilized PD models induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to explore the neuroprotective ability of ginkgetin in vivo and in vitro. Our results showed that ginkgetin could provide significant protection from MPP+-induced cell damage in vitro by decreasing the levels of intracellular reactive oxygen species and maintaining mitochondrial membrane potential. Meanwhile, ginkgetin dramatically inhibited cell apoptosis induced by MPP+ through the caspase-3 and Bcl2/Bax pathway. Moreover, ginkgetin significantly improved sensorimotor coordination in a mouse PD model induced by MPTP by dramatically inhibiting the decrease of tyrosine hydroxylase expression in the substantia nigra and superoxide dismutase activity in the striatum. Interestingly, ginkgetin could strongly chelate ferrous ion and thereby inhibit the increase of the intracellular labile iron pool through downregulating L-ferritin and upregulating transferrin receptor 1. These results indicate that the neuroprotective mechanism of ginkgetin against neurological injury induced by MPTP occurs via regulating iron homeostasis. Therefore, ginkgetin may provide neuroprotective therapy for PD and iron metabolism disorder related diseases.  相似文献   
87.
88.
《Free radical research》2013,47(9):710-717
Abstract

The protecting ability of the Piper betle leaves-derived phenol, allylpyrocatechol (APC) against AAPH-induced membrane damage of human red blood cells (RBCs) was investigated. Compared to control, AAPH (50 mM) treatment resulted in significant hemolysis (55%, p < 0.01), associated with increased malondialdehyde (MDA) (2.9-fold, p < 0.001) and methemoglobin (6.1-fold, p < 0.001) levels. The structural deformation due to membrane damage was confirmed from scanning electron microscopy (SEM) images and Heinz bodies formation, while the cell permeability was evident from the K+ efflux (28.7%, p < 0.05) and increased intracellular Na+ concentration (8%, p < 0.05). The membrane damage, due to the reduction of the cholesterol/phospholipids ratio and depletion (p < 0.001) of ATP, 2,3-DPG by ?44–54% and Na+–K+ ATPase activity (43.7%), indicated loss of RBC functionality. The adverse effects of AAPH on all these biochemical parameters and the resultant oxidative hemolysis of RBCs were significantly reduced by pretreating the cells with APC (7 μM) or α-tocopherol (50 μM) for 1 h, prior to incubation with AAPH.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号