首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2294篇
  免费   129篇
  国内免费   122篇
  2024年   7篇
  2023年   51篇
  2022年   78篇
  2021年   121篇
  2020年   105篇
  2019年   100篇
  2018年   104篇
  2017年   51篇
  2016年   47篇
  2015年   124篇
  2014年   162篇
  2013年   167篇
  2012年   85篇
  2011年   111篇
  2010年   70篇
  2009年   125篇
  2008年   112篇
  2007年   119篇
  2006年   81篇
  2005年   76篇
  2004年   64篇
  2003年   57篇
  2002年   56篇
  2001年   36篇
  2000年   32篇
  1999年   28篇
  1998年   28篇
  1997年   15篇
  1996年   23篇
  1995年   19篇
  1994年   18篇
  1993年   15篇
  1992年   20篇
  1991年   16篇
  1990年   12篇
  1989年   17篇
  1988年   15篇
  1987年   11篇
  1986年   13篇
  1985年   13篇
  1984年   36篇
  1983年   15篇
  1982年   25篇
  1981年   20篇
  1980年   9篇
  1979年   12篇
  1978年   4篇
  1977年   8篇
  1976年   4篇
  1975年   4篇
排序方式: 共有2545条查询结果,搜索用时 292 毫秒
71.
FK506‐sensitive proline rotamases (FPRs), also known as FK506‐binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15‐kD Fpr1, membrane‐associated 14.78‐kD Fpr2 and nuclear 50.43‐kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect‐pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+, K+, Mn2+, Ca2+, Cu2+, metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+, Mg2+, Fe2+, H2O2 and cell wall‐perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+/K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.  相似文献   
72.
Ferritins are a large family of iron storage proteins, which are used by bacteria and other organisms to avoid iron toxicity and as a safe iron source in the cytosol. Agrobacterium tumefaciens, a phytopathogen, has two ferritin-encoding genes: atu2771 and atu2477. Atu2771 is annotated as a Bfr-encoding gene (Bacterioferritin, Bfr) and atu2477 as a Dps-encoding gene (D NA binding p rotein from s tarved cells, Dps). Three deletion mutants (Δbfr, Δdps, and bfr-dps double-deletion mutant ΔbdF) of these two ferritin-encoding genes were constructed to investigate the effects of ferritin deficiency on the iron homeostasis, oxidative stress resistance, and pathogenicity of A. tumefaciens. Deficiency of two ferritins affects the growth of A. tumefaciens under iron starvation and excess. When supplied with moderate iron, the growth of A. tumefaciens is not affected by the deficiency of ferritin. Deficiency of ferritin significantly reduces iron accumulation in the cells of A. tumefaciens, but the effect of Bfr deficiency on iron accumulation is severer than Dps deficiency and the double mutant ΔbdF has the least intracellular iron content. All three ferritin-deficient mutants showed a decreased tolerance to 3 mM H2O2 in comparison with the wild type. The tumour induced by each of three ferritin-deficient mutants is less than that of the wild type. Complementation reversed the effects of ferritin deficiency on the growth, iron homeostasis, oxidative stress resistance, and tumorigenicity of A. tumefaciens. Therefore, ferritin plays an important role in the pathogenesis of A. tumefaciens through regulating iron homeostasis and oxidative stress survival.  相似文献   
73.
Caloric restriction (CR) has positive effects on health and longevity. CR in mammals implements time‐restricted (TR) feeding, a short period of feeding followed by prolonged fasting. Periodic fasting, in the form of TR or mealtime, improves metabolism without reduction in caloric intake. In order to understand the relative contribution of reduced food intake and periodic fasting to the health benefits of CR, we compared physiological and metabolic changes induced by CR and TR (without reduced food intake) in mice. CR significantly reduced blood glucose and insulin around the clock, improved glucose tolerance, and increased insulin sensitivity (IS). TR reduced blood insulin and increased insulin sensitivity, but in contrast to CR, TR did not improve glucose homeostasis. Liver expression of circadian clock genes was affected by both diets while the mRNA expression of glucose metabolism genes was significantly induced by CR, and not by TR, which is in agreement with the minor effect of TR on glucose metabolism. Thus, periodic fasting contributes to some metabolic benefits of CR, but TR is metabolically different from CR. This difference might contribute to differential effects of CR and TR on longevity.  相似文献   
74.
Tissue homeostasis is controlled by the differentiated progeny of residential progenitors (stem cells). Adult stem cells constantly adjust their proliferation/differentiation rates to respond to tissue damage and stresses. However, how differentiated cells maintain tissue homeostasis remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, protects differentiated cells from loss to maintain intestinal homeostasis. HS depletion in enterocytes (ECs) leads to intestinal homeostasis disruption, with accumulation of intestinal stem cell (ISC)‐like cells and mis‐differentiated progeny. HS‐deficient ECs are prone to cell death/stress and induced cytokine and epidermal growth factor (EGF) expression, which, in turn, promote ISC proliferation and differentiation. Interestingly, HS depletion in ECs results in the inactivation of decapentaplegic (Dpp) signaling. Moreover, ectopic Dpp signaling completely rescued the defects caused by HS depletion. Together, our data demonstrate that HS is required for Dpp signal activation in ECs, thereby protecting ECs from ablation to maintain midgut homeostasis. Our data shed light into the regulatory mechanisms of how differentiated cells contribute to tissue homeostasis maintenance.  相似文献   
75.
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.  相似文献   
76.
77.
78.
为了解2种丛枝菌根真菌(AMF)摩西管柄囊霉(Funneliformis mosseae, FM)和地表球囊霉(Glomus versiforme, GV)对入侵植物南美蟛蜞菊(Wedelia trilobata)的生长和对难溶性磷酸盐利用的影响,采用沙培盆栽方式,研究了南美蟛蜞菊在接种AMF与添加难溶性磷酸盐的生长和磷含量的变化。结果表明,在磷限制环境下FM对南美蟛蜞菊的侵染率达55%~69%,GV的侵染率达到63%~80%。添加难溶性磷酸盐后,2种AMF均促进了南美蟛蜞菊茎的伸长(FM:+46%; GV:+65%)、总生物量的增加(FM:+27.2%; GV:+40%)和磷含量的增加(FM:+36.6%; GV:+40.7%)。对比FM,GV对植物利用难溶性磷有更显著的促进作用。因此,南美蟛蜞菊与2种AMF形成的共生体系可以促进植物生长和对营养资源的利用,提高对难溶性磷的吸收效率可能使得南美蟛蜞菊在营养贫乏的环境中更好地建立种群。  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号