首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2294篇
  免费   129篇
  国内免费   122篇
  2024年   7篇
  2023年   51篇
  2022年   78篇
  2021年   121篇
  2020年   105篇
  2019年   100篇
  2018年   104篇
  2017年   51篇
  2016年   47篇
  2015年   124篇
  2014年   162篇
  2013年   167篇
  2012年   85篇
  2011年   111篇
  2010年   70篇
  2009年   125篇
  2008年   112篇
  2007年   119篇
  2006年   81篇
  2005年   76篇
  2004年   64篇
  2003年   57篇
  2002年   56篇
  2001年   36篇
  2000年   32篇
  1999年   28篇
  1998年   28篇
  1997年   15篇
  1996年   23篇
  1995年   19篇
  1994年   18篇
  1993年   15篇
  1992年   20篇
  1991年   16篇
  1990年   12篇
  1989年   17篇
  1988年   15篇
  1987年   11篇
  1986年   13篇
  1985年   13篇
  1984年   36篇
  1983年   15篇
  1982年   25篇
  1981年   20篇
  1980年   9篇
  1979年   12篇
  1978年   4篇
  1977年   8篇
  1976年   4篇
  1975年   4篇
排序方式: 共有2545条查询结果,搜索用时 392 毫秒
31.
Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1–3 (TET 1–3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1–3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.  相似文献   
32.
Summary 3-Fluorotyrosine fluorescence is quenched effectively by phosphate ions not only by a dynamic but also by a static mechanism owing to H-bond complex formation in ground state. 3-Fluorotyrosine pKa values both in the ground and first excited state (8.3 and 4, respectively) are appreciably lower than those of tyrosine, thus promoting 3-fluorotyrosinate ion formation in the excited state. Additional emission owing to 3-fluorotyrosinate ion (near 350 nm) may be taken erroneously for tryptophan fluorescence.  相似文献   
33.
Human physiology and behavior are characterized by a daily internal temporal dimension. This so-called circadian rhythmicity is present for almost all variables studied to date, persists in the absence of external cycles, and is synchronized to the external 24-h world by an internally generated circadian rhythm of light sensitivity. The light-sensitive circadian pacemaker, presumably also in humans located in the suprachiasmatic nucleus of the hypothalamus, drives the endogenous circadian component of rhythmicity for a number of variables including plasma melatonin, alertness, sleep propensity and sleep structure. Overt rhythmicity and the consolidation of vigilance states are generated by a fine-tuned interaction of this circadian process with other regulatory processes such as sleep homeostasis.  相似文献   
34.
The high-affinity uptake system of phosphatelimited cyanobacterium Anacystis nidulans [Synechococcus leopoliensis (Raciborski) Komarek] is characterized by a threshold value below which uptake cannot occur. Here it is shown that, if phosphate-limited cyanobacteria are challenged with a short pulse of high phosphate concentration that appreciably exceeds this threshold value, the uptake system undergoes an adaptive response, leading to the attainment of new kinetic properties and a new threshold value. These new properties are maintained for several hours after the pulse. A notable characteristic of this new state is a wide linear dependence of the uptake rate on the external phosphate potential that is a function of the driving force of the uptake process. According to theoretical arguments it is shown that this “linear operation mode” can be explained by the simultaneous operation of several uptake systems with different, staggered threshold values and kinetic properties. Moreover, the new linear uptake properties, in turn, reflect the prehistory of phosphate supply experienced by the population. The consequences of this result with regard to environmental fluctuations of the phosphate concentration in lakes are discussed.  相似文献   
35.
In this study, the role of root organic acid synthesis and exudation in the mechanism of aluminum tolerance was examined in Al-tolerant (South American 3) and Al-sensitive (Tuxpeño and South American 5) maize genotypes. In a growth solution containing 6 M Al3+, Tuxpeño and South American 5 were found to be two- and threefold more sensitive to Al than South American 3. Root organic acid content and organic acid exudation from the entire root system into the bulk solution were investigated via high-performance liquid chromatographic analysis while exudates collected separately from the root apex or a mature root region (using a dividedroot-chamber technique) were analyzed with a more-sensitive ion chromatography system. In both the Al-tolerant and Al-sensitive lines, Al treatment significantly increased the total root content of organic acids, which was likely the result of Al stress and not the cause of the observed differential Al tolerance. In the absence of Al, small amounts of citrate were exuded into the solution bathing the roots. Aluminum exposure triggered a stimulation of citrate release in the Al-tolerant but not in the Al-sensitive genotypes; this response was localized to the root apex of the Al-tolerant genotype. Additionally, Al exposure triggered the release of phosphate from the root apex of the Al-tolerant genotype. The same solution Al3+ activity that elicited the maximum difference in Al sensitivity between Al-tolerant and Al-sensitive genotypes also triggered maximal citrate release from the root apex of the Al-tolerant line. The significance of citrate as a potential detoxifier for aluminum is discussed. It is concluded that organic acid release by the root apex could be an important aspect of Al tolerance in maize.Abbreviations SA3 South American 3, an Al-tolerant maize cultivar - SA5 South American 5, an Al-sensitive maize cultivar The authors would like to express their appreciation to Drs. John Thompson, Ross Welch and Mr. Stephen Schaefer for their training and guidance in the use of the chromatography systems. This work was supported by a Swiss National Science Foundation Fellowship to Didier Pellet, and U.S. Department of Agriculture/National Research Initiative Competitive Grant 93-37100-8874 to Leon Kochian. We would also like to thank Drs. S. Pandey and E. Ceballos from the CIMMYT Regional office at CIAT Cali, Colombia for providing seed for the maize varieties and inbred line.  相似文献   
36.
It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in Nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources. Correspondence to: S.L. Miller  相似文献   
37.
 Comparative in vivo 31P-NMR analyses of mycorrhizal and nonmycorrhizal roots of Pinus sylvestris and the fungus of Suillus bovinus in pure culture were used to investigate alterations in phosphate metabolism due to changes in external pH in the range 3.5–8.5. All control samples maintained a constant pH in both cytoplasm and vacuole. Mycorrhizal roots and pure fungus, but not nonmycorrhizal roots, transformed accumulated inorganic phosphate into mobile polyphosphate with a medium chain length. Phosphate uptake rates and polyphosphate accumulation responded differently to external pH. In all cases, maximal phosphate uptake occurred at an external pH close to 5.5. At an external pH of 8.5, both roots and fungus showed a distinct lag in phosphate uptake, which was abolished when the external pH was lowered to 7.5. An irreversible effect on phosphate uptake as a consequence of variation in external pH was also observed. The central role of the fungus in regulating mycorrhizal phosphate metabolism is discussed. Accepted: 15 April 1997  相似文献   
38.
Abstract: Amyloid β-peptide (Aβ) is deposited as insoluble fibrils in the brain parenchyma and cerebral blood vessels in Alzheimer's disease (AD). In addition to neuronal degeneration, cerebral vascular alterations indicative of damage to vascular endothelial cells and disruption of the blood-brain barrier occur in AD. Here we report that Aβ25-35 can impair regulatory functions of endothelial cells (ECs) from porcine pulmonary artery and induce their death. Subtoxic exposures to Aβ25-35 induced albumin transfer across EC monolayers and impaired glucose transport into ECs. Cell death induced by Aβ25-35 was of an apoptotic form, characterized by DNA condensation and fragmentation, and prevented by inhibitors of macromolecular synthesis and endonucleases. The effects of Aβ25-35 were specific because Aβ1-40 also induced apoptosis in ECs with the apoptotic cells localized to the microenvironment of Aβ1-40 aggregates and because astrocytes did not undergo similar changes after exposure to Aβ25-35. Damage and death of ECs induced by Aβ25-35 were attenuated by antioxidants, a calcium channel blocker, and a chelator of intracellular calcium, indicating the involvement of free radicals and dysregulation of calcium homeostasis. The data show that Aβ induces increased permeability of EC monolayers to macromolecules, impairs glucose transport, and induces apoptosis. If similar mechanisms are operative in vivo, then Aβ and other amyloidogenic peptides may be directly involved in vascular EC damage documented in AD and other disorders that involve vascular amyloid accumulation.  相似文献   
39.
Abstract: Activation of immediate early gene expression is a key event in stress-induced neuronal cell injury. To study whether changes in cytoplasmic calcium activity are necessary to activate neuronal immediate early gene expression, endoplasmic reticulum (ER) calcium stores of primary neurons were depleted by exposing cells to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+-ATPase. Tg-induced rise in [Ca2+]i and the effect of loading neurons with the cell-permeable calcium chelator BAPTA-AM on this increase in [Ca2+]i were measured in fura-2-loaded cells by fluorescence microscopy. Changes in c- fos mRNA levels were evaluated by quantitative PCR. Tg treatment of neurons produced a pronounced rise in c- fos mRNA levels (∼10-fold more than DMSO) which peaked at 1 h after exposure. The Tg-induced rise in c- fos mRNA content was unchanged (hippocampal neurons) or even increased further (cortical neurons) by preloading cells with BAPTA before incubation with Tg. It is concluded that in neuronal cells an increase in cytoplasmic calcium activity is not a prerequisite for a rise in mRNA levels of c- fos . Thus, stress-induced changes in mRNA levels of immediate early genes of neurons may also result from disturbances in ER calcium homeostasis and not necessarily by an overload of cells with calcium ions. The results of the present series of experiments cast further doubt on the widely accepted hypothesis that the stress-induced cytoplasmic overload of neurons with calcium ions is the primary event triggering cell injury.  相似文献   
40.
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+/Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45Ca2+) accumulation in the microsomes mediated by Mg2+/Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号