首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1445篇
  免费   37篇
  国内免费   45篇
  1527篇
  2023年   7篇
  2022年   6篇
  2021年   11篇
  2020年   16篇
  2019年   35篇
  2018年   17篇
  2017年   8篇
  2016年   16篇
  2015年   27篇
  2014年   39篇
  2013年   47篇
  2012年   37篇
  2011年   54篇
  2010年   38篇
  2009年   63篇
  2008年   64篇
  2007年   72篇
  2006年   62篇
  2005年   65篇
  2004年   62篇
  2003年   59篇
  2002年   42篇
  2001年   29篇
  2000年   23篇
  1999年   30篇
  1998年   32篇
  1997年   33篇
  1996年   40篇
  1995年   40篇
  1994年   34篇
  1993年   32篇
  1992年   31篇
  1991年   38篇
  1990年   26篇
  1989年   28篇
  1988年   30篇
  1987年   20篇
  1986年   13篇
  1985年   16篇
  1984年   29篇
  1983年   22篇
  1982年   31篇
  1981年   34篇
  1980年   21篇
  1979年   18篇
  1978年   3篇
  1977年   13篇
  1976年   7篇
  1975年   3篇
  1973年   2篇
排序方式: 共有1527条查询结果,搜索用时 10 毫秒
31.
32.
The role of astroglia on the survival of dopamine neurons   总被引:5,自引:0,他引:5  
Glial cells play a key role in the function of dopamine (DA) neurons and regulate their differentiation, morphology, physiological and pharmacological properties, survival, and resistance to different models of DA lesion. Several studies suggest that glial cells may be important in the pathogenesis of Parkinson’s disease (PD), a common neurodegenerative disorder characterized by degeneration of the nigrostriatal DA system. In this disease the role of glia could be due to the excessive production of toxic products such as nitric oxide (NO) or cytokines characteristic of inflammatory process, or related to a defective release of neuroprotective agents, such as small antioxidants with free radical scavenging properties or peptidic neurotrophic factors.  相似文献   
33.
The activity of p-coumarate 3-hydroxylase (C3H) is thought to be essential for the biosynthesis of lignin and many other phenylpropanoid pathway products in plants; however, no conditions suitable for the unambiguous assay of the enzyme are known. As a result, all attempts to purify the protein and clone its corresponding gene have failed. By screening for plants that accumulate reduced levels of soluble fluorescent phenylpropanoid secondary metabolites, we have identified a number of Arabidopsis mutants that display a reduced epidermal fluorescence (ref) phenotype. Using radiotracer-feeding experiments, we have determined that the ref8 mutant is unable to synthesize caffeic acid, suggesting that the mutant is defective in a gene required for the activity or expression of C3H. We have isolated the REF8 gene using positional cloning methods, and have verified that it encodes C3H by expression of the wild-type gene in yeast. Although many previous reports in the literature have suggested that C3H is a phenolase, the isolation of the REF8 gene demonstrates that the enzyme is actually a cytochrome P450-dependent monooxygenase. Although the enzyme accepts p-coumarate as a substrate, it also exhibits significant activity towards other p-hydroxylated substrates. These data may explain the previous difficulties in identifying C3H activity in plant extracts and they indicate that the currently accepted version of the lignin biosynthetic pathway is likely to be incorrect.  相似文献   
34.
Appert C  Zoń J  Amrhein N 《Phytochemistry》2003,62(3):415-422
The conformationally restricted phenylalanine analogue 2-aminoindan-2-phosphonic acid (AIP) inhibits phenylalanine ammonia-lyase (PAL) competitively in a time-dependent manner. This phenomenon was investigated in more detail with the heterologously expressed, highly purified homotetrameric PAL-1 isozyme from parsley. The kinetic analysis revealed that the enzyme-inhibitor complex is formed in a single "slow" step with an association rate of k(2)=2.6+/-0.04 10(4) M(-1) s(-1). The inhibition is reversible with a dissociation rate of k(-2)=1.8+/-0.04 10(-4) s(-1) and an equilibrium constant of K(i)=7+/-2 nM. The previously described PAL inhibitor (S)-2-aminooxy-3-phenylpropanoic acid [(S)-AOPP] was also found to be a slow-binding inhibitor of PAL-1. The carboxyl analogue of AIP, 2-aminoindan-2-carboxylic acid, served as a substrate of PAL-1 and was converted to indene-2-carboxylic acid.  相似文献   
35.
Purpose: Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagons/vasoactive intestinal peptide family, induces the expression of catecholamine-synthesizing enzymes in adrenal medullary cells. In addition, PACAP and its receptor have been detected in human pheochromocytoma tissues, though it is not yet known whether PACAP enhances the expression of genes encoding catecholamine-synthesizing enzymes. To address this question, we analyzed PACAP, PACAP receptor, and tyrosine hydroxylase (TH) and phenylethanolamine-N-methyltransferase (PNMT) mRNAs in pheochromocytomas. Methods: The levels of the mRNA for PACAP and vasoactive intestinal peptide (VIP), and their receptors, and for TH and PNMT were measured by RT-PCR or real-time PCR analysis, and the concentrations of catecholamines were measured by HPLC in 24 intra-adrenal and six extra-adrenal pheochromocytomas. Results: mRNA expression of PACAP and its receptor VPAC1R were detected in many pheochromocytomas (24/30 and 29/30, respectively), but mRNA expression of the PAC1R and VPAC2R receptor subtypes were detected in only one of six extra-adrenal pheochromocytomas. PACAP mRNA expression correlated with TH (p=0.0018) and PNMT (p=0.05) mRNA expression, as well as epinephrine (p=0.0342) levels in 16 intra-adrenal pheochromocytomas. Conclusion: Our findings support a possible role for PACAP in the regulation of expression of genes encoding catecholamine-synthesizing enzymes in intra-adrenal pheochromocytomas.  相似文献   
36.
1. Our previous studies demonstrated that when neural stem cells (NSCs) of the C17.2 clonal line are transplanted into the intact or 6-hydroxydopamine (6-OHDA) lesioned rat striatum, in most, but not all grafts, cells spontaneously express the dopamine (DA) biosynthetic enzymes, tyrosine hydroxylase (TH), and aromatic L-amino acid decarboxylase (Yang, M., Stull, N. D., Snyder, E. Y., Berk, M. A., and Iacovitti, L. (2002). Exp. Neurol.).2. These results suggested that there were certain conditions which were more conducive to the development of DA traits in NSCs and possibly other neurotransmitter phenotypes.3. In the present study, we modified a number of variables in vitro (i.e. passage number, confluence) and/or in vivo (degree, type, and site of injury) before assessing the survival, migration, and differentiation of engrafted NSCs.4. We found that low confluence cultures were comprised exclusively of flattened polygonal cells, which when transplanted, migrated widely in the brain but did not express TH.5. In contrast, high confluence cultures contained both polygonal cells and an overlying bed of fusiform cells.6. When these NSCs were maintained for 12–20 passages and then transplanted, virtually all engrafted cells in 65% of the grafts expressed TH but not markers of other neurotransmitter systems.7. Importantly, all TH+ grafts were accompanied by significant physical damage to the brain while TH grafts were not, suggesting that local injury-related factors were also important.8. Of no apparent influence on TH expression, regardless of how cells were grown prior to implantation, was the site of transplantation (cortex or striatum) or the degree of chemical lesion (intact, partial or full).9. We conclude that transplanted NSCs can express traits specifically associated with DA neurons but only when cells are grown under certain conditions in vitro and then transplanted in proximity to injury-induced factors present in vivo.  相似文献   
37.
The classical view of norepinephrine transporter (NET) function is the re-uptake of released norepinephrine (NE) by mature sympathetic neurons and noradrenergic neurons of the locus ceruleus (LC; [1-3]). In this report we review previous data and present new results that show that NET is expressed in the young embryo in a wide range of neuronal and non-neuronal tissues and that NET has additional functions during embryonic development. Sympathetic neurons are derived from neural crest stem cells. Fibroblast growth factor-2 (FGF-2), neurotrophin-3 (NT-3) and transforming growth factor-1 (TGF-1) regulate NET expression in cultured quail neural crest cells by causing an increase in NET mRNA levels. They also promote NET function in both neural crest cells and presumptive noradrenergic cells of the LC. The growth factors are synthesized by the neural crest cells and therefore are likely to have autocrine function. In a subsequent stage of development, NE transport regulates differentiation of noradrenergic neurons in the peripheral nervous system and the LC by promoting expression of tyrosine hydroxylase (TH) and dopamine--hydroxylase (DBH). Conversely, uptake inhibitors, such as the tricyclic antidepressant, desipramine, and the drug of abuse, cocaine, inhibit noradrenergic differentiation in both tissues. Taken together, our data indicate that NET is expressed early in embryonic development, NE transport is involved in regulating expression of the noradrenergic phenotype in the peripheral and central nervous systems, and norepinephrine uptake inhibitors can disturb noradrenergic cell differentiation in the sympathetic ganglion (SG) and LC.  相似文献   
38.
39.
40.
This study aimed to investigate the effects of docosahexaenoic acid (DHA) on the oxidative stress that occurs in an experimental mouse model of Parkinson’s disease (PD). An experimental model of PD was created by four intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (4 × 20 mg/kg, at 12 h intervals). Docosahexaenoic acid was given daily by gavage for 4 weeks (36 mg/kg/day). The motor activity of the mice was evaluated via the pole test, and the dopaminergic lesion was determined by immunohistochemical analysis for tyrosine hydroxylase (TH)-immunopositive cells. The activity of antioxidant enzymes in the brain were determined by spectrophotometric assays and the concentration of thiobarbituric acid-reactive substances (TBARS) were measured as an index of oxidative damage. The number of apoptotic dopaminergic cells significantly increased in MPTP-treated mice compared to controls. Although DHA significantly diminished the number of cell deaths in MPTP-treated mice, it did not improve the decreased motor activity observed in the experimental PD model. Docosahexaenoic acid significantly diminished the amount of cell death in the MPTP + DHA group as compared to the MPTP group. TBARS levels in the brain were significantly increased following MPTP treatment. Glutathione peroxidase (GPx) and catalase (CAT) activities of brain were unaltered in all groups. The activity of brain superoxide dismutase (SOD) was decreased in the MPTP-treated group compared to the control group, but DHA treatment did not have an effect on SOD activity in the MPTP + DHA group. Our current data show that DHA treatment exerts neuroprotective actions on an experimental mouse model of PD. There was a decrease tendency in brain lipid oxidation of MPTP mice but it did not significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号