首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
  国内免费   9篇
  92篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   13篇
  2008年   12篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
31.
Ants are social, and their metabolism should be measured on at least two levels: (i) the individual workers and brood of which the colony is composed and (ii) the colony in its entirety. Whole colony respiration, tempo (size‐free running speed in body lengths per second) and whole colony activity were simultaneously measured for 15 species of ants in four subfamilies, and these data are related to average worker and whole‐colony weight, activity, percentage brood and percentage fat. Across all 15 species, whole colony respiration rate (μL CO2 h?1) is linearly related to whole colony live weight (log–log slope = 1.0). Colonies composed of large workers respire less than colonies composed of an equal live weight of small workers, and colonies with high tempos respire more than lower tempo colonies of equal weight. The tempos and respiration rates of smaller ants tend to be higher, and a higher tempo exacts a cost in higher respiration independent of the effect of small body size. Individual worker respiration (μL CO2 h?1) scales to worker live weight with an exponent of 0.76. Whole colony specific respiration rate (μL CO2 g?1 h?1) is unrelated to colony live weight. The regressions of respiration rates against colony and worker dry weight, lean weight and metabolic weight have similar slopes to those of live weight but different intercepts. Respiration is not related to worker percentage fat, percentage brood or activity. Ant ecology, tempo, body size, polymorphism and colony size are discussed in relation to respiration.  相似文献   
32.
Summary The hypothesis that ants (Pheidole minutula) associated with the myrmecophytic melastome Maieta guianensis defend their host-plant against herbivores was investigated in a site near Manaus, Amazonas, Brazil. M. guianensis is a small shrub that produces leaf pouches as ant domatia. Plants whose ants were experimentally removed suffered a significant increase in leaf damage compared with control plants (ants maintained). Ants patrol the young and mature leaves of Maieta with the same intensity, presumably since leaves of both ages are equally susceptible to herbivore attack. The elimination of the associated ant colony, and consequent increase in herbivory, resulted in reduced plant fitness. Fruit production was 45 times greater in plants with ants than in plants without ants 1 year after ant removal.  相似文献   
33.
Striking variation in ant occupation of a facultative ant-plant, Conostegia setosa (Melastomataceae), was found at three scales: local spatial, geographic, and temporal. C. setosa provides housing for ants and grows in groups of stems (clones). The ant occupants of 14 C. setosa clones were censused four times over a 14-mo period at the La Selva Biological Station, Costa Rica, and twice over a 9-mo period at the Nusagandi Station, Panama. Twelve facultative ant species occupied C. setosa stems at La Selva, compared to six facultative and one obligate species at Nusagandi. Occupancy (as % of stems ever occupied/clone) was higher at Nusagandi (median = 89%) compared to La Selva (65%). Occupancy varied among clones at La Selva but not at Nusagandi. C. setosa clones differed between sites, with larger clones and more small stems/clone at La Selva. Occupancy was influenced by clone structure; larger clones contained more ant species at both sites and had lower occupancy at La Selva. Occupancy was highest in larger stems and lowest in small stems at both sites. Temporally, percent occupation/clone did not differ among censuses at either site, but overall occupancy was lower in the dry season at La Selva. Turnover in ant occupants was higher at La Selva than at Nusagandi. The variation observed in this study is likely due to a number of factors, including differences between sites in plant population structure and history, differences between and within sites in ant faunas and their nesting requirements, and changes over space and time in microclimatic variables. Such high variation at multiple scales draws attention to the importance of long-term comparative studies of facultative animal-plant interactions.  相似文献   
34.
A recent study by Fournier et al. (2003) provides important new information on sex allocation in the ant Pheidole pallidula, and proposes a new scenario for sex-ratio evolution in P. pallidula and similar species. However, Helms proposed to the authors that two important conclusions of the study were questionable because of potential problems with the analyses. Here we provide new data and a reanalysis that strengthens the conclusion that colony sex ratio is associated with breeding system (i.e., polygyny or monogyny). However, the proposal that colonies shift from monogyny to polygyny when they become larger and more productive is weakened because there is substantial overlap in productivity between monogynous and polygynous colonies.  相似文献   
35.
Abstract 1. Predators can affect prey directly by reducing prey abundance and indirectly by altering behavioural patterns of prey. From previous studies, there is little evidence that ant community structure is affected by vertebrate predation. 2. Researchers tend to consider the interactions between vertebrate predators and ants to be weak. The present study examined the impact of the exotic invasive lizard, Anolis sagrei, on the ant community structure by manipulating the density of lizards within enclosures. The natural density of A. sagrei in the field was surveyed and used as the stocking density rate in the lizard‐present sub‐enclosures. 3. Before the lizard density was manipulated, there was no difference in the ant diversity between sub‐enclosures. After the lizard density manipulation, the ant diversity in sub‐enclosures with A. sagrei present was significantly different from that of enclosures where the lizards were absent, although the overall ant abundance did not differ significantly. 4. The ant diversity difference was generated by a significant reduction of the ant species Pheidole fervens in sub‐enclosures with A. sagrei present. Such an abundance change might be the result of direct predation by the lizards, or it might be generated by a foraging site shift by this ant. 5. The results of this study thus demonstrated that the invasion of an exotic vertebrate can significantly alter the community structure of ants, perhaps through the combined direct and indirect effects of lizards on ants.  相似文献   
36.
During foraging, societies of the polymorphic ant, Pheidole pallidula,display several collective patterns which differ in the ratio of recruited majors. The intensity of behavioral stimuli required to induce this majors' recruitment is determined by studying trail-laying and tactile invitations for the following two food recruitments: (I) the slow and weak recruitment of minors, without majors, to a pile of small, individually retrievable fruit flies and (2) the massive recruitment of both minors and majors to large, unretrievable cockroaches. The selective mobilization of majors only to large prey such as cockroaches is due both to their preferential invitation and to their higher behavioral threshold of response to recruiting stimuli. The experimental evidence of caste behavioral thresholds allow us to reconsider behavioral elasticity in the major caste as well as principles of division of labor in ant societies.  相似文献   
37.
Ants of the genus Pheidole are important seed consumers in several desert ecosystems. In South American deserts, although several Pheidole spp. have been characterized as seed harvesters, studies on their diet and ecological role are still missing. Pheidole spininodis (Mayr) and Pheidole bergi (Mayr) are capable of removing seeds in the central Monte desert. The aim of this study was to quantify and compare the diet of these species and to interpret the results in the context of seed–granivore interactions. Diet was estimated during mid-summer by collecting items brought back to the nest by foragers in ten colonies per species. While P. spininodis was mainly granivorous, P. bergi was mainly insectivorous. However, they both collected ~40% of other types of items. Among seeds, the diet of P. spininodis included mostly grass seeds, whereas the diet of P. bergi was mainly made up of shrub and tree seeds, usually retrieved cooperatively. This behavior allowed P. bergi to carry larger seeds, resulting in diet partitioning in terms of seed size. However, diet of P. spininodis is very similar to that of three sympatric Pogonomyrmex species. Thus, specialized harvester ants remove large quantities of grass seeds in the central Monte desert during the summer, potentially affecting their abundance in the soil seed bank. P. bergi directs its feeding pressure to shrub and tree seeds, and although seeds constitute ~10% of its diet, its high colony density and high activity levels, added to the lower proportion of large seeds in the soil seed bank, indicate that their importance as seed consumers cannot be ruled out.  相似文献   
38.
The nutritional demands of animals vary by taxon. Across landscapes, communities of animals experience variability in the stoichiometry of carbon and nutrients within their resource base. Thus, we expect stoichiometry to contribute to the spatial variance in the demographic parameters of animal communities. Here, we measure how the composition of a litter-nesting tropical rainforest ant community is influenced by spatial variation in environmental stoichiometry relative to litter biomass, a known predictor of ant density. We found the density of ants and their nests were strongly related to litter biomass and carbon: phosphorus stoichiometry. The spatial variation in soil nutrients, which determines leaf litter stoichiometry, was an excellent predictor of nest size in the two most common genera of ants. We found a negative relationship between species' growth rate and local soil stocks of phosphorus. Overall, the density of litter-dwelling ants varied greatly across this tropical forest landscape and environmental stoichiometry can account for limits on ant density independent of the biomass of the leaf litter resource base.  相似文献   
39.
Recruitment via pheromone trails by ants is arguably one of the best-studied examples of self-organization in animal societies. Yet it is still unclear if and how trail recruitment allows a colony to adapt to changes in its foraging environment. We study foraging decisions by colonies of the ant Pheidole megacephala under dynamic conditions. Our experiments show that P. megacephala, unlike many other mass recruiting species, can make a collective decision for the better of two food sources even when the environment changes dynamically. We developed a stochastic differential equation model that explains our data qualitatively and quantitatively. Analysing this model reveals that both deterministic and stochastic effects (noise) work together to allow colonies to efficiently track changes in the environment. Our study thus suggests that a certain level of noise is not a disturbance in self-organized decision-making but rather serves an important functional role.  相似文献   
40.
1. Trade-offs underpin local species coexistence. Trade-offs between interference and exploitative competitive ability provie a mechanism for explaining species coexistence within guilds that exploit overlapping resources. 2. Omnivorous, leaf litter ants exploit a shared food base and occur in species-rich assemblages. In these assemblages, species that excel at usurping food items from other species are poor at finding food items first. In assemblages where some members are attacked by phorid fly parasitoids, host species face an additional trade-off between defending themselves against parasitic attack and maximizing their competitive abilities. Host species thus face two trade-offs that interact via the trait-mediated indirect interaction generated by phorid defence behaviour. 3. In this study we test for the existence of these trade-offs and evaluate the predictions of a model for how they interact in an assemblage of woodland ants in which two behaviourally dominant members are attacked by phorid fly parasitoids as they attempt to harvest food resources. 4. The major findings are that unparasitized species in the assemblage follow a dominance-discovery trade-off curve. When not subject to attack by phorid flies, host species violate that trade-off by finding resources too quickly for their level of behavioural dominance. In contrast, when attacked by their phorid parasitoids, the host species dominance drops such that they fall into the assemblage trade-off. 5. These results match the predictions of the balance of terror model, which derives the optimal host response to parasitism, indicating that the host species balance the competing fitness costs of reduced competitive dominance and loss of workers to parasitism. This result supports the view that understanding the structure of ecological communities requires incorporating the indirect effects created by trait plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号