首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   3篇
  96篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2016年   2篇
  2014年   8篇
  2013年   9篇
  2012年   11篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有96条查询结果,搜索用时 0 毫秒
51.
T Hamzehloei  SA Hosseini  R Vakili  M Mojarad 《Gene》2012,506(1):230-232

Background

Characterization of the molecular basis of phenylketonuria (PKU) in North-east of Iran has been accomplished through the analysis of 62 unrelated chromosomes from 31 Iranian PKU patients.

Methods

Phenylalanine hydroxylase (PAH) gene mutations have been analyzed by direct DNA sequencing exons 6, 7, 10 and 11.

Results

A mutation detection rate of 74% was achieved. Eleven different mutations were found, with the most frequent mutation, IVS10-11G > A, accounting for 19% of Khorasan-Razavi PKU alleles. Ten mutations (R176X, E280K, IVS11 + 1G > C, S231P, Q383X, R243X, I224T, E390G, R252W and P281L) represent the rest PKU chromosomes. One novel mutation, Q383X in the homozygote form was identified which is located in the catalytic domain (residues143–410).

Conclusion

With this high detection rate of mutations in North-east of Iran, new strategy for carrier testing could be DNA sequencing of these four exons. The other exons and boundaries will be studied only when either one or no mutations are detected in the initial screen.  相似文献   
52.
The excited-state dynamics of delayed fluorescence in photosystem (PS) II at 77 K were studied by time-resolved fluorescence spectroscopy and decay analysis on three samples with different antenna sizes: PS II particles and the PS II reaction center from spinach, and the PS II core complexes from Synechocystis sp. PCC 6803. Delayed fluorescence in the nanosecond time region originated from the 683-nm component in all three samples, even though a slight variation in lifetimes was detected from 15 to 25 ns. The relative amplitude of the delayed fluorescence was higher when the antenna size was smaller. Energy transfer from the 683-nm pigment responsible for delayed fluorescence to antenna pigment(s) at a lower energy level was not observed in any of the samples examined. This indicated that the excited state generated by charge recombination was not shared with antenna pigments under the low-temperature condition, and that delayed fluorescence originates directly from the PS II reaction center, either from chlorophyll aD1 or P680. Supplemental data on delayed fluorescence from spinach PS I complexes are included.  相似文献   
53.
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE.  相似文献   
54.
The beta-tubulin genes of two Strongyloides species   总被引:1,自引:0,他引:1  
The World Health Organization is sponsoring major treatment programs with the aim of controlling helminth infection throughout the tropical world. Prominent among the anthelmintics recommended for use in these programs are drugs in the benzimidazole (BZ) class. Resistance to these drugs has been associated with polymorphisms in the beta-tubulin gene. We have cloned and sequenced the beta-tubulin genes of Strongyloides stercoralis and Strongyloides ratti and have proceeded to develop a protocol for genotyping single worms for polymorphisms in beta-tubulin. Our findings indicate that S. ratti has a single beta-tubulin gene, making DNA sequence analysis of a single larva PCR product a feasible means of studying BZ resistance in these species. Our genotyping test allows the identification of polymorphisms at codons 167, 198, and 200 in the Strongyloides beta-tubulin gene, thus enabling survey for BZ resistant genotypes.  相似文献   
55.
The pseudo-fourfold homotetrameric synapse formed by Cre protein and target DNA restricts site-specific recombination to sequences containing dyad-symmetric Cre-binding repeats. Mixtures of engineered altered-specificity Cre monomers can form heterotetramers that recombine nonidentical asymmetric sequences, allowing greater flexibility for target site selection in the genome of interest. However, the variety of tetramers allowed by random subunit association increases the chances of unintended reactivity at nontarget sites. This problem can be circumvented by specifying a unique spatial arrangement of heterotetramer subunits. By reconfiguring intersubunit protein-protein contacts, we directed the assembly of two different Cre monomers, each having a distinct DNA sequence specificity, in an alternating (ABAB) configuration. This designed heterotetramer preferentially recombined a particular pair of asymmetric Lox sites over other pairs, whereas a mixture of freely associating subunits showed little bias. Alone, the engineered monomers had reduced reactivity towards both dyad-symmetric and asymmetric sites. Specificity arose because the organization of Cre-binding repeats of the preferred substrate matched the programmed arrangement of the subunits in the heterotetrameric synapse. When this “spatial matching” principle is applied, Cre-mediated recombination can be directed to asymmetric DNA sequences with greater fidelity.  相似文献   
56.
Systematics derived from morphological characters often does not correspond with the evolutionary processes underlying the divergence within a group of organisms. In the family Mugilidae (Teleostei) morphological similarities have resulted in inconsistencies between taxonomy and phylogeny among its species, and particularly for the genera Mugil, Liza and Chelon where both intrageneric and intergeneric phylogenetic clarifications are needed. To address these issues, the direct sequencing of the mitochondrial region that encodes Phenylalanine (69 bp), 12S rRNA (842 bp), cytochrome c oxidase subunit I (651 bp) and cytochrome b (702 bp) was carried out. The data reveal that Mugil platanus and Mugil liza represent a continuum of a single species, closely related to but distinct from Mugil cephalus which itself appears to comprise a grouping of multiple and closely related species. This species complex was genetically distinct from Mugil curema, which, based on three clearly diverged species identified in this study along the Atlantic coast of the Americas, requires extensive taxonomic revision throughout its world-wide distribution. Unlike the monophyly supported within Mugil, relationships within Liza are paraphyletic, and a taxonomic revision of the genera Liza, Chelon and Oedalechilus is needed.  相似文献   
57.
New “non-isomerizable” analogs of the 3′-terminus of AA-tRNA, C-A(2′Phe)H, C-A(2′Phe)Me, C-A(2′H)Phe and C-A(2′Me)Phe, were tested as acceptor substrates of ribosomal peptidyl transferase and inhibitors of the peptidyl transferase A-site function. The 3′-O-AA-derivatives were active acceptors of Ac-Phe in the peptidyl transferase reaction, while the 2′-O-AA-derivatives were completely inactive. Both 2′- and 3′-O-AA-derivatives were potent inhibitors of peptidyl transferase catalyzed Ac-Phe transfer to puromycin. The results indicate that although peptidyl transferase exclusively utilizes 3′-O-esters of tRNA as acceptor substrates, its A-site can also recognize the 3′-terminus of 2′-O-AA-tRNA.  相似文献   
58.
Joachim Buchta 《BBA》2007,1767(6):565-574
The analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 μs to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O-O bond formation [M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019-1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 μs (at 20 °C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 °C, pH 6.4). In the second part of the study, the temperature dependence (− 2.7 to 27.5 °C) of the rate constant of dioxygen formation (600/s at 20 °C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained.  相似文献   
59.
Leigh syndrome is one of the most common childhood-onset neurometabolic disorders resulting from a primary oxidative phosphorylation dysfunction and affecting mostly brain tissues. Ndufs4?/? mice have been widely used to study the neurological responses in this syndrome, however the reason why these animals do not display strong muscle involvement remains elusive. We combined biochemical strategies and multi-platform metabolomics to gain insight into the metabolism of both glycolytic (white quadriceps) and oxidative (soleus) skeletal muscles from Ndufs4?/? mice. Enzyme assays confirmed severely reduced (80%) CI activity in both Ndufs4?/? muscle types, compared to WTs. No significant alterations were evident in other respiratory chain enzyme activities; however, Ndufs4?/? solei displayed moderate decreases in citrate synthase (12%) and CIII (18%) activities. Through hypothesis-generating metabolic profiling, we provide the first evidence of adaptive responses to CI dysfunction involving non-classical pathways fueling the ubiquinone (Q) cycle. We report a respective 48 and 34 discriminatory metabolites between Ndufs4?/? and WT white quadriceps and soleus muscles, among which the most prominent alterations indicate the involvement of the glycerol-3-phosphate shuttle, electron transfer flavoprotein system, CII, and proline cycle in fueling the Q cycle. By restoring the electron flux to CIII via the Q cycle, these adaptive mechanisms could maintain adequate oxidative ATP production, despite CI deficiency. Taken together, our results shed light on the underlying pathogenic mechanisms of CI dysfunction in skeletal muscle. Upon further investigation, these pathways could provide novel targets for therapeutic intervention in CI deficiency and potentially lead to the development of new treatment strategies.  相似文献   
60.
A peptide, N‐Ac‐Phe‐Tyr‐NH2, with angiotensin I‐converting enzyme (ACE) inhibitor activity was synthesized by an α‐chymotrypsin‐catalyzed condensation reaction of N‐acetyl phenylalanine ethyl ester (N‐Ac‐Phe‐OEt) and tyrosinamide (Tyr‐NH2). Three kinds of solvents: a Tris–HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic‐aqueous solvent (Tris‐HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N‐Ac‐Phe‐Tyr‐NH2 could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N‐Ac‐Phe‐Tyr‐NH2, so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号