首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18774篇
  免费   1316篇
  国内免费   1765篇
  21855篇
  2023年   248篇
  2022年   242篇
  2021年   346篇
  2020年   486篇
  2019年   597篇
  2018年   704篇
  2017年   608篇
  2016年   514篇
  2015年   519篇
  2014年   792篇
  2013年   970篇
  2012年   601篇
  2011年   749篇
  2010年   545篇
  2009年   671篇
  2008年   719篇
  2007年   736篇
  2006年   645篇
  2005年   616篇
  2004年   484篇
  2003年   463篇
  2002年   431篇
  2001年   366篇
  2000年   390篇
  1999年   321篇
  1998年   300篇
  1997年   282篇
  1996年   244篇
  1995年   252篇
  1994年   246篇
  1993年   240篇
  1992年   213篇
  1991年   187篇
  1990年   204篇
  1989年   153篇
  1988年   169篇
  1987年   150篇
  1985年   630篇
  1984年   718篇
  1983年   426篇
  1982年   612篇
  1981年   469篇
  1980年   479篇
  1979年   387篇
  1978年   334篇
  1977年   285篇
  1976年   247篇
  1975年   253篇
  1974年   229篇
  1973年   188篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Shinano  Takuro  Osaki  Mitsuru  Tadano  Toshiaki 《Plant and Soil》1993,155(1):207-210
It has been generally considered that the low productivity of Leguminosae is caused by accumulation in the reproductive organs of a large amount of protein and lipid, since the biochemical costs of synthesizing these compounds is higher than that for carbohydrate. However, we report here on results which show that: the growth efficiencies (dry matter accumulated/ (dry matter accumulated + respiration)) of reproductive organs of Gramineae and Leguminosae were similar; the growth efficiency of rice in the vegetative stage was greater than that of soybean and field bean, regardless of nitrogen application rate; and when 14CO2, 14C-sucrose or 14C-asparagine were introduced to the leaf at the maturation stage, respiratory loss of the introduced 14C was greater in soybean and field bean, especially in the light, than in rice. Thus, it is assumed that the low productivity in Leguminosae is caused by a larger respiratory loss under both dark and light condition in the shoot, and not in the reproductive organs.  相似文献   
82.
Blue light controls solar tracking by flowers of an alpine plant   总被引:2,自引:0,他引:2  
In at least 18 plant families, leaves or flowers can maintain a specific orientation with respect to diurnal movements of the sun. Previous work on heliotropic leaves has demonstrated that blue light (400–500nm) provides the cue for their tracking response. Floral heliotropism occurs in several families of arctic and alpine plants, but the spectral sensitivity of the response has not been studied previously. Moreover, no studies on the spectral sensitivity of any heliotropism have been conducted on wild plants growing in their natural habitat. Working under field conditions, we used coloured acrylic filters to determine whether heliotropism by flowers of the snow buttercup (Ranunculus adoneus) is responsive to broad-band blue or red light. Flowers were able to orient towards the sun under boxes made entirely of blue-transmitting filters and in red-transmitting boxes having a single blue side that faced the sun. In these treatments, solar tracking ability was not significantly different from that observed in adjacent control flowers. In contrast, the precision of solar orientation was significantly reduced in red-transmitting boxes and red boxes with a single blue side oriented away from the sun. In the early morning, flowers covered by red-transmitting boxes failed to orient in the direction of sunrise, suggesting that this floral response, unlike that seen in some heliotropic leaves, lacks a residual‘memory’ for previous solar movements.  相似文献   
83.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   
84.
85.
The influence of temperature on total glycoalkaloid (TGA) synthesis in tubers exposed to light (250 jumol m“2 s”2 PAR, Photosynthetically Active Radiation) or dark environments for 96 h was examined in three potato cultivars. Following 96 h light or dark the tubers were stored without light at 5°C or 24°C and TGA concentrations monitored over the subsequent 30 and 90 days. Exposure to light and cultivar were found to be major factors influencing TGA concentrations; temperature had no significant effect. TGA content in illuminated tubers of cvs ‘Pentland Hawk’ and ‘Kerrs Pink’ were significantly higher (P < 0.01) compared with tubers placed in the dark. TGA concentrations in cv. ‘Desiree’ increased significantly only following exposure to light at low temperatures (P < 0.05). Removal of tubers from storage at 5°C and immediate illumination at 24°C altered the ratio of glycoalkaloids in cvs ‘Pentland Hawk’ and ‘Kerrs Pink’. Regardless of cultivar and storage temperature TGA concentrations were higher at the end of the storage period compared with initial TGA concentrations. During storage TGA concentrations fluctuated widely and gradual accumulation of glycoalkaloids with time was rarely demonstrated except in cv. ‘Desiree’. Tubers stored at 24°C accumulated higher TGA concentrations than those stored at 5°C in cv. ‘Kerrs Pink’ but not in cvs ‘Pentland Hawk’ and ‘Desiree’. Tubers of cv. ‘Kerrs Pink’ exposed to light prior to storage accumulated glycoalkaloids more rapidly than unexposed tubers during storage at 24°C and occasionally at 5°C. Light enhanced glycoalkaloids are not degraded over time.  相似文献   
86.
87.
Scytonemin, the yellow-brown pigment of cyanobacterial (blue-green algal) extracellular sheaths, was found in species thriving in habitats exposed to intense solar radiation. Scytonemin occurred predominantly in sheaths of the outermost parts or top layers of cyanobacterial mats, crusts, or colonies. Scytonemin appears to be a single compound identified in more than 30 species of cyanobacteria from cultures and natural populations. It is lipid soluble and has a prominent absorption maximum in the near-ultraviolet region of the spectrum (384 nm in acetone; ca. 370 nm in vivo) with a long tail extending to the infrared region. Microspectrophotometric measurements of the transmittance of pigmented sheaths and the quenching of ultraviolet excitation of phycocyanin fluorescence demonstrate that the pigment was effective in shielding the cells from incoming near-ultraviolet-blue radiation, but not from green or red light. High light intensity (between 99 and 250 μmol photon · m?2· S?1, depending on species) promoted the synthesis of scytonemin in cultures of cyanobacteria. In cultures, high light intensity caused reduction in the specific content of Chl a and phycobilins, increase in the ratio of total carotenoids to Chl a, and scytonemin increase. UV-A (320–400 nm) radiation was very effective in eliciting scytonemin synthesis. Scytonemin production was physiological and not due to a mere photochemical conversion. These results strongly suggest that scytonemin production constitutes an adaptive strategy of photoprotection against short-wavelength solar irradiance.  相似文献   
88.
The formation of chlortetracycline(CTC)-induced wall appositions (callose plugs) in Nitella flexilis (L.)Ag. was pH-dependent in the range between 4.3-8.3. Plug number and plug diameter increased with the pH of the CTC solution. At pH 4.3 plug formation was light-dependent and occurred below the alkaline regions of the cell surface which form during photo synthetic assimilation of HCO3?. Inhibition of photosynthesis by 3–(3′,4′-dichlorophenyl)-1, 1-dimethylurea prevented plug formation in the light. Dark-treated cells could be induced to form plugs by raising the pH of the CTC solution. The formation of large but incomplete plugs in the presence of cytochalasin B is explained by the formation of numerous weak alkaline sites. I suggest that CTC enhances locally the Ca2+content at the cytoplasm near the plasmamembrane. The ionophoric character of CTC is probably more pronounced at high pH mainly because of a weaker binding with cations and a closer contact with the membrane.  相似文献   
89.
We quantified patterns of vegetation removal and light availability above Atta colombica nests on Barro Colorado Island, Panama. Ants cleared vegetation less than 1 cm in diameter from an area of 77 m2, and up to 3 m above ground level. Overall light availability 1.5 m above ground level was 49 percent greater at ant nest sites than at sites in undisturbed understory. These higher light levels fell within the range known to enhance growth of both shade tolerant and pioneer species.  相似文献   
90.
Human physiology and behavior are characterized by a daily internal temporal dimension. This so-called circadian rhythmicity is present for almost all variables studied to date, persists in the absence of external cycles, and is synchronized to the external 24-h world by an internally generated circadian rhythm of light sensitivity. The light-sensitive circadian pacemaker, presumably also in humans located in the suprachiasmatic nucleus of the hypothalamus, drives the endogenous circadian component of rhythmicity for a number of variables including plasma melatonin, alertness, sleep propensity and sleep structure. Overt rhythmicity and the consolidation of vigilance states are generated by a fine-tuned interaction of this circadian process with other regulatory processes such as sleep homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号