首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4461篇
  免费   248篇
  国内免费   322篇
  5031篇
  2023年   49篇
  2022年   57篇
  2021年   74篇
  2020年   93篇
  2019年   110篇
  2018年   104篇
  2017年   90篇
  2016年   110篇
  2015年   126篇
  2014年   191篇
  2013年   334篇
  2012年   124篇
  2011年   178篇
  2010年   168篇
  2009年   231篇
  2008年   223篇
  2007年   249篇
  2006年   217篇
  2005年   239篇
  2004年   211篇
  2003年   172篇
  2002年   161篇
  2001年   127篇
  2000年   123篇
  1999年   126篇
  1998年   94篇
  1997年   89篇
  1996年   76篇
  1995年   83篇
  1994年   92篇
  1993年   90篇
  1992年   73篇
  1991年   57篇
  1990年   61篇
  1989年   56篇
  1988年   44篇
  1987年   44篇
  1986年   35篇
  1985年   43篇
  1984年   36篇
  1983年   30篇
  1982年   30篇
  1981年   27篇
  1980年   11篇
  1979年   19篇
  1978年   21篇
  1977年   7篇
  1976年   9篇
  1974年   5篇
  1973年   5篇
排序方式: 共有5031条查询结果,搜索用时 15 毫秒
991.
The clinically isolated heat labile enterotoxin (LT)-producing strains of Escherichia coli can be separated into two groups, namely spontaneous LT-releasing strain and non-spontaneous LT-releasing strain, based on their phenotypes of spontaneous release of LT into the culture medium. The phenotype of spontaneous LT release was observed to correlate closely with the phenotype of the release of numerous small vesicles into the culture medium. Both morphological and biological examinations of the vesicle showed that the vesicle was released from the outer membrane. It can, therefore, be assumed that LT may be released from the cell at the time the vesicles form.  相似文献   
992.
993.
    
A fundamental problem in biochemistry and molecular biology is understanding the spatial structure of macromolecules and then analyzing their functions. In this study, the three-dimensional structure of a ribosome-inactivating protein luffin- was predicted using a neural network method and molecular dynamics simulation. A feedforward neural network with the backpropagation learning algorithm were trained on model class of homologous proteins including trichosanthin and-momorcharin. The distance constraints for the C atoms in the protein backbone were utilized to generate a folded crude conformation of luffin- by model building and the steepest descent minimization approach. The crude conformation was refined by molecular dynamics techniques and a simulated annealing procedure. The interaction between luffin- and its analogous substrate GAGA was also simulated to understand its action mechanism.  相似文献   
994.
995.
In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a “ferment” similar to mammalian pepsin, an aspartic protease. Here we report a high‐quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all‐atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. Proteins 2016; 84:1517–1533. © 2016 Wiley Periodicals, Inc.  相似文献   
996.
A fluorescent resonance energy transfer substrate with improved sensitivity for ADAM17, −10, and −9 (where ADAM represents a disintegrin and metalloproteinase) has been designed. The new substrate, Dabcyl-Pro-Arg-Ala-Ala-Ala-Homophe-Thr-Ser-Pro-Lys(FAM)-NH2, has specificity constants of 6.3 (±0.3) × 104 M−1 s−1 and 2.4 (±0.3) × 103 M−1 s−1 for ADAM17 and ADAM10, respectively. The substrate is more sensitive than widely used peptides based on the precursor tumor necrosis factor-alpha (TNF-alpha) cleavage site, PEPDAB010 or Dabcyl-Ser-Pro-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Lys(FAM)-NH2 and Mca-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Arg-NH2. ADAM9 also processes the new peptide more than 18-fold better than the TNF-alpha-based substrates. The new substrate has a unique selectivity profile because it is processed less efficiently by ADAM8 and MMP1, −2, −3, −8, −9, −12, and −14. This substrate provides a unique tool in which to assess ADAM17, −10, and −9 activities.  相似文献   
997.
The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αβ heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence.

  相似文献   

998.
Vibrio cholerae cytolysin/hemolysin (VCC) is a 65 kDa β-pore-forming toxin causing lysis and death of eukaryotic cells. Apart from the core cytolysin domain, VCC has two lectin domains with β-trefoil and β-prism folds. The β-prism domain binds to cell surface carbohydrate receptors; the role of the β-trefoil domain is unknown. Here, we show that the pro-VCC mutant without the β-trefoil domain formed aggregates highly susceptible to proteolysis, suggesting lack of a properly folded compact structure. The VCC variants with Trp532Ala or Trp534Ala mutation in the β-trefoil domain formed hemolytically inactive, protease-resistant, ring-shaped SDS-labile oligomers with diameters of ~19 nm. The Trp mutation induced a dramatic change in the global conformation of VCC, as indicated by: (a) the change in surface polarity from hydrophobic to hydrophilic; (b) movement of core Trp residues to the protein-water interface; and (c) decrease in reactivity to the anti-VCC antibody by >100-fold. In fact, the mutant VCC had little similarity to the wild toxin. However, the association constant for the carbohydrate-dependent interaction mediated by the β-prism domain decreased marginally from ~3×108 to ~5×107 M?1. We interpret the observations by proposing: (a) the β-trefoil domain is critical to the folding of the cytolysin domain to its active conformation; (b) the β-prism domain is an autonomous folding unit.  相似文献   
999.
The ability of a killer yeast (Pichia anomala, UCSC 25F) to produce toxin in vivo was demonstrated, for the first time, in tissues of normal and immunosuppressed experimentally infected mice by means of a fluorescent antibody technique and a killer toxin specific monoclonal antibody. The possible significance of the findings is discussed.  相似文献   
1000.
The yeast Hanseniaspora uvarum liberates a killer toxin lethal to sensitive strains of the species Saccharomyces cerevisiae. Secretion of this killer toxin was inhibited by tunicamycin, an inhibitor of N-glycosylation, although the mature killer protein did not show any detectable carbohydrate structures. Culture supernatants of the killer strain were concentrated by ultrafiltration and the extracellular killer toxin was precipitated with ethanol and purified by ion exchange chromatography. SDS-PAGE of the electrophoretically homogenous killer protein indicated an apparent molecular mass of 18,000.Additional investigations of the primary toxin binding sites within the cell wall of sensitive yeast strains showed that the killer toxin of Hanseniaspora uvarum is bound by -1, 6-d-glucans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号