首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   8篇
  1992年   12篇
  1991年   6篇
  1990年   7篇
  1989年   8篇
  1988年   10篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
21.
The binding of cholera toxin, tetanus toxin and pertussis toxin to ganglioside containing solid supported membranes has been investigated by quartz crystal microbalance measurements. The bilayers were prepared by fusion of phospholipid-vesicles on a hydrophobic monolayer of octanethiol chemisorbed on one gold electrode placed on the 5 MHz AT-cut quartz crystal. The ability of the gangliosides GM1, GM3, GD1a, GD1b, GT1b and asialo-GM1 to act as suitable receptors for the different toxins was tested by measuring the changes of quartz resonance frequencies. To obtain the binding constants of each ligand-receptor-couple Langmuir-isotherms were successfully fitted to the experimental adsorption isotherms. Cholera toxin shows a high affinity for GM1 (Ka = 1.8 ⋅ 108M–1), a lower one for asialo-GM1 (Ka = 1.0 ⋅ 107 M–1) and no affinity for GM3. The C-fragment of tetanus toxin binds to ganglioside GD1a, GD1b and GT1b containing membranes with similar affinity (Ka∼106 M–1), while no binding was observed with GM3. Pertussis toxin binds to membranes containing the ganglioside GD1a with a binding constant of Ka = 1.6 ⋅ 106 M–1, but only if large amounts (40 mol%) of GD1a are present. The maximum frequency shift caused by the protein adsorption depends strongly on the molecular structure of the receptor. This is clearly demonstrated by an observed maximum frequency decrease of 99 Hz for the adsorption of the C-fragment of tetanus toxin to GD1b. In contrast to this large frequency decrease, which was unexpectedly high with respect to Sauerbrey's equation, implying pure mass loading, a maximum shift of only 28 Hz was detected after adsorption of the C-fragment of tetanus toxin to GD1a. Received: 14 January 1997 / Accepted: 15 April 1997  相似文献   
22.
OVCAR3 ovarian cancer cells express three sphingosine 1-phosphate (S1P) receptors, S1P(1), S1P(2), and S1P(3), but not S1P(4). Stimulation of OVCAR3 cells with S1P induced intracellular calcium increases, which were partly inhibited by VPC 23019 (an S1P(1/3) antagonist). S1P-induced calcium increases were mediated by phospholipase C and pertussis toxin (PTX)-sensitive G-proteins in OVCAR3 cells. S1P stimulated extracellular signal-regulated kinase, p38 kinase, and Akt which were inhibited by PTX. S1P-stimulated chemotactic migration of OVCAR3 cells in a PTX-sensitive manner, indicating crucial role of G(i) protein(s) in the process. S1P-induced chemotactic migration of OVCAR3 cells was completely inhibited by LY294002 and SB203580. Pretreatment of VPC 23019 (an S1P(1/3) antagonist) completely inhibited S1P-induced chemotaxis. S1P also induced invasion of OVCAR3 cells, which was also inhibited by VPC 23019. Taken together, this study suggests that S1P stimulate chemotactic migration and cellular invasion, and VPC 23019-sensitive S1P receptor(s) might be involved in the processes.  相似文献   
23.
We investigated the early effects of the anti-idiotypic antibody (clone 1D5), which recognized the estrogen receptor (ER), on cytosolic free calcium concentration ([Ca2+]i) and its long term effects on creatine kinase (CK) specific activity in female human and rat osteoblasts. These actions were compared to the known membrane and genomic effects of 17β estradiol (E2). Like E2, clone 1D5 increased within 5 s [Ca2+]i in both cell types by two mechanisms: 1) Ca2+ influx through voltage-gated Ca2+ channels as shown by using EGTA, a chelator of extracellular Ca2+, and nifedipine, a Ca2+ channel blocker; 2) Ca2+; mobilization from the endoplasmic reticulum as shown by using phospholipase C inhibitors, such as neomycin and U-73122, which involved a Pertussis toxin-sensitive G-protein. Clone 1D5 and E2 stimulated CK specific activity in human and rat osteoblasts with ten fold higher concentrations than those needed for the membrane effects (0.1 μg/ml and 10 pM, respectively). Both effects were gender-specific since testosterone and 5α-dihydotesterone were uneffective. Tamoxifen and Raloxifene, two estrogen nuclear antagonists, inhibited CK response to 1D5 and E2 and Ca2+ response to 1D5, but not CA2+ response to E2. By contrast, (Fab′)2 dimer, a proteolytic fragment of 1D5 with antagonist properties, inhibited both membrane and genomic effects of 1D5 and E2. In conclusion, these results imply that clone 1D5 has an estrogen like activity both at the membrane and nuclear levels in female human and rat osteoblasts. 1D5 must therefore interact with membrane binding sites, penetrate the cells, and reach the nuclear receptors by an as yet uncharacterized mechanism. J. Cell. Biochem. 65:53–66. © 1997 Wiley-Liss, Inc.  相似文献   
24.
The immune modulator FTY720 is phosphorylated in vivo to FTY720 phosphate (FTY-P), which activates four sphingosine 1-phosphate (S1P) receptors including S1P3. Upon activation with S1P, S1P3 couples to Gi- and Gq-protein-dependent signalling pathways. Here we show that FTY-P selectively activates the S1P3-mediated and Gi-coupled inhibition of adenylyl cyclase. Contemporaneously, it antagonizes the S1P-induced activation of Gq via S1P3 in intracellular calcium flux measurements, GTP-binding experiments, and flow cytometric analyses of activation-induced receptor down-regulation. In contrast to S1P, pre-treatment with FTY-P did not desensitize S1P-induced calcium flux or chemotaxis via S1P3. The lack of receptor desensitization prevented S1P3-mediated migration to FTY-P. Human umbilical vein endothelial cells express S1P1 and S1P3, and respond to S1P and FTY-P by ERK1/2 phosphorylation and by intracellular calcium release in a pertussis toxin-sensitive manner. But whereas a mixture of S1P and FTY-P was not affecting ERK1/2 phosphorylation, the intracellular calcium flux was hampered with increasing amounts of FTY-P, which points to a cross-talk between S1P1 and S1P3. FTY-P is therefore one of the rare ligands which bind to a receptor that couples multiple G-proteins but selectively activates only one signalling pathway.  相似文献   
25.
In our previous study, fluoride ([AlF(4) ](-) ) disturbed ER-to-Golgi transport through the activation of ER-resident heterotrimeric G protein (ER-G protein). Therefore, ER-G protein may be implicated in ER-to-Golgi transport at the early stage prior to coat protein assembly. Sar1 translocation onto the endoplasmic reticulum (ER) membrane is suppressed by non-selective protein kinase inhibitor H89, suggesting the participation of H89-sensitive kinase in this process. To investigate the involvement of ER-G protein in ER-to-Golgi transport, the effect of G(i) protein activator (mastoparan 7) was examined on Sar1 translocation onto the ER in a cell-free system consisting of microsome membrane and cytosol. Sar1 translocation onto the microsome membrane was induced by addition of GTPγS in the cell-free system. Translocation of Sar1 by GTPγS was suppressed significantly by both H89 and mastoparan 7. Mastoparan 7 suppressed the translocation of Sar1 onto the microsome membrane with dosage dependency, but mastoparan 17, the inactive analog of mastoparan 7, had no effect on Sar1 translocation. The suppressive effect of mastoparan 7 was recovered by treatment with pertussis toxin (IAP). Moreover, G(i2) protein was detected on the microsome membrane by western blotting for heterotrimeric G(i) proteins. These results indicate that ER-G(i2) protein modulated Sar1 translocation onto the ER, suggesting that ER-resident G(i2) protein is an important negative regulator of vesicular transport at the early stage of vesicle formation before coat protein assembly on the ER.  相似文献   
26.
Heterotrimeric G-proteins are the immediate downstream effectors of G-protein coupled receptors (GPCRs). Endogenous protein guanine nucleotide dissociation inhibitors (GDIs) like AGS3/4 and RGS12/14 function through GPR/Goloco GDI domains. Extensive characterization of GPR domain peptides indicate they function as selective GDIs for Gαi by competing for the GPCR and Gβγ and preventing GDP release. We modified a GPR consensus peptide by testing FGF and TAT leader sequences to make the peptide cell permeable. FGF modification inhibited GDI activity while TAT preserved GDI activity. TAT-GPR suppresses G-protein coupling to the receptor and completely blocked α2-adrenoceptor (α2AR) mediated decreases in cAMP in HEK293 cells at 100 nM. We then sought to discover selective small molecule inhibitors for Gαi. Molecular docking was used to identify potential molecules that bind to and stabilize the Gαi–GDP complex by directly interacting with both Gαi and GDP. Gαi–GTP and Gαq–GDP were used as a computational counter screen and Gαq–GDP was used as a biological counter screen. Thirty-seven molecules were tested using nucleotide exchange. STD NMR assays with compound 0990, a quinazoline derivative, showed direct interaction with Gαi. Several compounds showed Gαi specific inhibition and were able to block α2AR mediated regulation of cAMP. In addition to being a pharmacologic tool, GDI inhibition of Gα subunits has the advantage of circumventing the upstream component of GPCR-related signaling in cases of overstimulation by agonists, mutations, polymorphisms, and expression-related defects often seen in disease.  相似文献   
27.
The present study demonstrates that 3,4-dihydroxyphenylethylamine (DA, dopamine) prevents neurotensin (NT) stimulation of both prolactin (PRL) release and calcium influx by interacting with specific receptors that are functionally linked to calcium channels. As shown by the studies with dispersed cells from rat anterior pituitary, the pharmacology of the control of PRL release and calcium influx, both induced by NT, was found to be typical of a DAergic process. This was demonstrated by the order of potency of agonists in inhibiting PRL release and calcium influx (DA greater than epinephrine greater than norepinephrine much greater than isoproterenol); by the high affinity of antagonists such as haloperidol and fluphenazine for this process; and by the high degree of stereoselectivity of sulpiride. Specific D2 receptor agonists, such as bromocriptine and lisuride, and the specific D2 receptor antagonist (-)-sulpiride were found to be highly potent on the DA receptors negatively coupled with calcium channels and PRL release. DA was found to lack the capacity to change the influx of calcium induced by either the sodium channel activator veratridine or high extracellular potassium levels, thus indicating a specific action of this amine on calcium channels sensitive to NT. In a range of concentrations that are effective in inhibiting either the calcium influx or the PRL release, both induced by NT, DA did not alter the cyclic AMP generating system. DA (from 1.0 nM to 50 nM) did not affect adenylate cyclase activity in rat pituitary gland homogenates and did not modify intracellular cyclic AMP levels in pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
28.
Abstract Pertussis toxin (PT) inhibited luminol-enhanced chemiluminescence induced in rabbit peritoneal neutrophils by N'-formyl- l -methionyl- l -leucyl- l -phenylalanine (fMLP) at doses as low as 0.8 ng·ml−1, even in the presence of a 10-fold higher concentration of filamentous haemagglutinin (FHA). A cell-free extract of Bordetella pertusis , containing predominantly PT and FHA, suppressed the neutrophil response to fMLP. After toxoiding with carbodiimide, the inhibitory activity of the extract was abolished and an enhancement of neutrophil chemiluminescence was observed due to FHA activity. Abrogation of the chemiluminescent response of neutrophils to fMLP is proposed as a sensitive, in vitro assay for PT, and may be useful for monitoring the residual toxin activity in pertussis toxoids and for determining the anti-toxic effects of anti-PT antibodies.  相似文献   
29.
Abstract: We found in cultured glioma (C6BU-1) cells that excitatory amino acids (EAAs) such as glutamate, N-methyl-d -aspartate (NMDA), aspartate, and metabotropic glutamate receptor agonist trans-(±)-1-amino-1,3-cyclopentanedicarboxylate caused an increase in the inositol 1,4,5-trisphosphate formation and the intracellular Ca2+ concentration ([Ca2+]i) in the absence of extracellular Mg2+ and Ca2+. Pertussis toxin treatment abolished this glutamate-induced [Ca2+]i increase. Various antagonists against NMDA receptor-ion channel complex, such as Mg2+, d -2-amino-5-phosphonovalerate (d -APV), HA-966, and MK-801, also inhibited the increase in [Ca2+]i induced by glutamate. These results indicate that these metabotropic EAA receptors coupled to pertussis toxin-susceptible GTP-binding protein and phospholipase C system in C6BU-1 glioma cells have the pharmacological properties of NMDA receptor-ion channel complexes. We also found that in the presence of Mg2+ these metabotropic receptors resemble the NMDA receptor-ion channel complex interacted with 5-hydroxytryptamine2 (5-HT2) receptor signaling. EAAs inhibited 5-HT2 receptor-mediated intracellular Ca2+ mobilization and inositol 1,4,5-trisphosphate formation in a concentration-dependent manner. The inhibitory effect of glutamate was reversed by various NMDA receptor antagonists (d -APV, MK-801, phencyclidine, and HA-966), but l -APV failed to block the inhibitory effect of glutamate. The same result was observed in the absence of extracellular Ca2+. In addition, this inhibitory effect on 5-HT2 receptor-mediated signal transduction was abolished by treatment of C6BU-1 cells with pertussis toxin, whereas 5-HT2 receptor-mediated [Ca2+]i increase was not abolished by pertussis toxin treatment. We can, therefore, conclude that the inhibitory effect of glutamate is not a result of the influx of Ca2+ through the ion channel and that it operates via metabotropic glutamate receptors, having NMDA receptor-ion channel complex-like properties and being coupled with pertussis toxin-sensitive GTP-binding protein and phospholipase C.  相似文献   
30.
Functional coupling between mu-opioid receptors and GTP-binding regulatory proteins (G proteins) was investigated in reconstituted membranes of the guinea pig striatum. Selective mu-opioid agonists stimulated low-Km GTPase in striatal membranes, in a Na(+)-dependent manner. The same mu-opioid agonist [( D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAGO)] caused no stimulation when the membranes were exposed to islet-activating protein (IAP; pertussis toxin). There was also no DAGO stimulation in preparations pretreated with a lower concentration (5 microM) of N-ethylmaleimide (NEM), which abolished the ADP-ribosylation of purified Gi (the G protein that mediates inhibition of adenylate cyclase) and Go (a G protein of unknown function purified from bovine brain) by IAP. In addition, as the NEM treatment caused no change in the mu-agonist binding, NEM could probably substitute for IAP in inactivating native G proteins, without exhibiting effects on the receptor binding in membranes. The mu-agonist stimulation of low-Km GTPase activity in NEM-treated membranes was recovered by reconstitution with purified Gi or Go. The mu-agonist stimulation of low-Km GTPase was additive when Gi and Go were simultaneously reconstituted in NEM-treated membranes in amounts of 0.5 pmol/assay, which was required for maximal recovery, in either reconstitution experiment. The present findings provide the first evidence that the mu-opioid receptor may exist in at least two different forms, separately coupled to Gi or Go.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号