首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18759篇
  免费   1040篇
  国内免费   801篇
  20600篇
  2023年   304篇
  2022年   403篇
  2021年   519篇
  2020年   465篇
  2019年   681篇
  2018年   657篇
  2017年   432篇
  2016年   425篇
  2015年   522篇
  2014年   1207篇
  2013年   1372篇
  2012年   819篇
  2011年   1088篇
  2010年   821篇
  2009年   854篇
  2008年   901篇
  2007年   928篇
  2006年   817篇
  2005年   690篇
  2004年   635篇
  2003年   511篇
  2002年   448篇
  2001年   318篇
  2000年   291篇
  1999年   302篇
  1998年   247篇
  1997年   238篇
  1996年   239篇
  1995年   229篇
  1994年   203篇
  1993年   177篇
  1992年   179篇
  1991年   177篇
  1990年   128篇
  1989年   133篇
  1988年   106篇
  1987年   105篇
  1986年   77篇
  1985年   194篇
  1984年   246篇
  1983年   180篇
  1982年   207篇
  1981年   186篇
  1980年   192篇
  1979年   132篇
  1978年   112篇
  1977年   117篇
  1976年   130篇
  1975年   87篇
  1974年   76篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
The rare disease cerebrotendinous xanthomatosis (CTX) is due to a lack of sterol 27-hydroxylase (CYP27A1) and is characterized by cholestanol-containing xanthomas in brain and tendons. Mice with the same defect do not develop xanthomas. The driving force in the development of the xanthomas is likely to be conversion of a bile acid precursor into cholestanol. The mechanism behind the xanthomas in the brain has not been clarified. We demonstrate here that female cyp27a1−/− mice have an increase of cholestanol of about 2.5- fold in plasma, 6-fold in tendons, and 12-fold in brain. Treatment of cyp27a1−/− mice with 0.05% cholic acid normalized the cholestanol levels in tendons and plasma and reduced the content in the brain. The above changes occurred in parallel with changes in plasma levels of 7α-hydroxy-4-cholesten-3-one, a precursor both to bile acids and cholestanol. Injection of a cyp27a1−/− mouse with 2H7-labeled 7α-hydroxy-4-cholesten-3-one resulted in a significant incorporation of 2H7-cholestanol in the brain. The results are consistent with a concentration-dependent flux of 7α-hydroxy-4-cholesten-3-one across the blood-brain barrier in cyp27a1−/− mice and subsequent formation of cholestanol. It is suggested that the same mechanism is responsible for accumulation of cholestanol in the brain of patients with CTX.  相似文献   
122.
Membrane microdomains are implicated in the trafficking and sorting of several membrane proteins. In particular GPI-anchored proteins cluster into Triton X-100 resistant, cholesterol- and sphingolipid-rich membrane microdomains and are sorted to the apical membrane. A growing body of evidence has pointed to the existence of other types of microdomains that are insoluble in detergents, such as Lubrol WX and Tween-20. Here, we report on the role of detergent-resistant membranes formed at early stages in the biosynthesis of membrane dipeptidase (MDP), a GPI-anchored protein, on its trafficking and sorting. Pulse-chase experiments revealed a retarded maturation rate of the GPI-anchor deficient mutant (MDPΔGPI) as compared to the wild type protein (wtMDP). However, Golgi to cell surface delivery rate did not show a significant difference between the two variants. On the other hand, early biosynthetic forms of wtMDP were partially insoluble in Tween-20, while MDPΔGPI was completely soluble. The lack of association of MDPΔGPI with detergent-resistant membranes prior to maturation in the Golgi and the reduction in its trafficking rate strongly suggest the existence of an early trafficking control mechanisms for membrane proteins operating at a level between the endoplasmic reticulum and the cis-Golgi.  相似文献   
123.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. A variety of GLP-1 sequences are known from amphibian species, and some of these have been tested here and found to be able to bind and activate the human GLP-1 receptor. While little difference was observed for the in vitro potency for the human GLP-1 receptor, larger differences were found in the enzymatic stability of these peptides. Two peptides showed increased enzymatic stability, and they group together phylogenetically, though they originate from Amphibia and Reptilia. We have used ancestral sequence reconstruction to analyze the evolution of these GLP-1 molecules, including the synthesis of new peptides. We find that the increased stability could not be observed in the resurrected peptides from the common ancestor of frogs, even though they maintain the ability to activate the human GLP-1 receptor. Another method, using residue mapping on evolutionary branches yielded peptides that had maintained potency towards the receptor and also showed increased stability. This represents a new approach using evolutionary data in protein engineering.  相似文献   
124.
The conversion of arachidonic acid to prostaglandins (PG's) and thromboxane B2 (TXB2) was investigated in homogenates from fetal and adult bovine and rabbit lungs. Adult bovine lungs were very active in converting arachidonic acid (100 μg/g tissue) to both PGE2 (10.7 μg/g tissue) and TXB2 (6.2 μ/g tissue). Smaller amounts of PGF (0.9 μ/g) and 6-oxoPGF were formed. Homogenates from fetal calf lungs during the third trimester of pregnancy were quite active in converting arachidonic acid to PGE2, but formed very little TXB2, PGF or 6-oxoPGF. Homogenates from rabbit lungs converted arachidonic acid (100 μg/g) mainly to PGE2, both before and after birth. The amount of PGE2 formed increased during gestation to a maximum of about 6 μg/g tissue at 28 days of gestation. It then decreased to a minimum (1.5 μg/g) which was observed 8 days after birth, followed by an increase to about 4 μg/g in older rabbits.  相似文献   
125.
Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild‐type Columbia‐0 (Col‐0) with a knockdown mutant of AteIF5A‐2, fbr12‐3 under Cd stress conditions. The results showed that the mutant fbr12‐3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A‐2 makes the mutant more Cd sensitive. Real‐time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12‐3 compared with Col‐0. As a result, an increase in MDA and H2O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis.  相似文献   
126.
《Phytomedicine》2014,21(12):1725-1732
Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   
127.
Computer simulation of an olfactory detector has been developed using a chemical kinetic scheme originally proposed by McNab and Koshland for bacterial chemotaxis. This model describes response as a function of two opposed reactions, both of which are activated by odorant. One reaction turns on response, while its opponent shuts it off. Net response to various stimulus profiles is compared to psychophysical experiments, with particular attention paid to simulating magnitude estimation and odor adaptation results. Effects of the access route to this detector are evaluated. Transport of odorant molecules is treated as having two sequential steps: step (i), airborne odorant is carried parallel to a retentive layer (mucus) into the detector region; step (ii), molecules diffuse through the retentive layer to the detector. Step (i) is represented as analogous to GLPC on an open tubular column. Each step has a characteristic time constant, which is proportional to (distance)2/diffusion coefficient. Response to highly volatile odorants tends to be limited by step (ii), while odorants of low volatility approach the step (i) limit. Sensitivity at both limits is attenuated by increasing the thickness of the retentive layer, but sensitivity at the step (i) limit is also affected by changes in air passageway and airflow characteristics. This picture can be used to explain variations in women's sensitivity to odorants of low volatility with the menstrual cycle, while their detection of volatile odorants fluctuates to a much lesser extent.  相似文献   
128.
The appropriate time and place for sleep and waking are important factors for survival. Sleep and waking, rest and activity, flight and fight, feeding, and reproduction are all organized in relation to the day and night. A biological clock, the suprachiasmatic nucleus (SCN), synchronized by photic influences and other environmental cues, provides an endogenous timing signal that entrains circadian body rhythms and is complemented by a homeostatic sleep pressure factor. Cholinergic, catecholaminergic, serotonergic, and histaminergic nuclei control wakefulness and mutually interact with the SCN as well as sleep- and wake-promoting neurons in the hypothalamus to form a bistable switch that controlls the timing of behavioral state transitions. Hypocretin neurons integrate circadian-photic and nutritional-metabolic influences and act as a conductor in the aminergic orchestra. Their loss causes narcolepsy, a disease conferring the inability to separate sleep and waking. Their role in appetitive behavior, stress, and memory functions is important to our understanding of addiction and compulsion.  相似文献   
129.
Dog platelets in citrated plasma fail to aggregate upon addition of AA, even though, as demonstrated by bioassay procedures and now by the radioimmunoassay, TxA2 is formed as in case of aggregating human platelets. Imidazole inhibited formation of TxB2 and increased the amounts of PGE2 formed, indicating specific inhibition of thromboxane synthetase. Other drugs tested (benzimidazolamine, compound L8027, indomethacin and isoprenaline) inhibited either cyclo-oxygenase alone, or together with thromboxane synthetase.  相似文献   
130.
Barbara P Rattner 《Fly》2013,7(3):135-141
Hedgehog (Hh) signaling is essential for proper tissue patterning and maintenance and has a substantial impact on human disease. While many of the main components and mechanisms involved in transduction of the Hh signal have been identified, the details of how the pathway functions are continually being refined. One aspect that has attracted much attention recently is the involvement of G-protein-coupled receptor kinases (GRKs) in the pathway. These regulators of G-protein-coupled receptor (GPCR) signaling have an evolutionarily-conserved function in promoting high-threshold Hh target gene expression through regulation of Smoothened (Smo), a GPCR family member that activates intracellular Hh signaling. Several models of how GRKs impact on Smo to increase downstream signaling have been proposed. Recently, we demonstrated that these kinases have surprisingly complex and conflicting roles, acting to limit signaling through the pathway while also promoting Smo activity. In addition to the previously described direct effects of Gprk2 on Smo activation, Gprk2 also indirectly affects Hh signaling by controlling production of the second messenger cyclic AMP to influence Protein kinase A activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号