首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   92篇
  国内免费   1篇
  2024年   3篇
  2023年   8篇
  2022年   15篇
  2021年   21篇
  2020年   17篇
  2019年   20篇
  2018年   20篇
  2017年   30篇
  2016年   27篇
  2015年   28篇
  2014年   19篇
  2013年   28篇
  2012年   16篇
  2011年   13篇
  2010年   5篇
  2009年   1篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有321条查询结果,搜索用时 62 毫秒
311.
312.
313.
314.
Glucocorticoid-induced osteonecrosis of the femoral head (GIOFH) is one of the most common complications of glucocorticoid administration. By chelating Fe2+, desferoxamine (DFO) was reported to be able to activate the HIF-1α/VEGF pathway and promote angiogenesis. In the present study, we examined whether DFO administration could promote angiogenesis and bone repair in GIOFH. GIOFH was induced in rats by methylprednisolone in combination with lipopolysaccharide. Bone repair was assessed by histologic analysis and microcomputed tomography (micro-CT). Vascularization was assessed by Microfil perfusion and micro-CT analysis. Immunohistochemical staining was performed to analyze the expression of HIF-1α, VEGF, and CD31. Our in vivo study revealed that DFO increased HIF-1α/VEGF expression and promoted angiogenesis and osteogenesis in GIOFH. Moreover, our in vitro study revealed that DFO restored dexamethone-induced HIF-1α downregulation and angiogenesis inhibition. Besides, our in vitro study also demonstrated that DFO could protect bone marrow-derived stem cells from dexamethone-induced apoptosis and mitochondrial dysfunction by promoting mitophagy and mitochondrial fission. In summary, our data provided useful information for the development of novel therapeutics for management of GIOFH.  相似文献   
315.
Glucocorticoid (GC)-induced osteonecrosis of the femoral head (GC-ONFH) is considered as one of the most serious side effects of long-term or over-dose steroid therapy. However, the underlying cause mechanisms are still not fully investigated. We firstly established a rat model of GC-ONFH and injected lipopolysaccharide (LPS) and methylprednisolone (MPS). We found that the expressions of Cx43, Runx2, ALP and COLⅠ were more decreased than the normal group. Secondly, the isolated rat bone marrow stem cells (BMSCs) were treated with dexamethasone (Dex) in vitro, and the expressions of Cx43, Runx2, ALP and COLⅠ were decreased significantly. Moreover, the results of immunofluorescence staining, alizarin red staining, EdU assay and CCK8 showed that the osteogenic differentiation and the proliferation capacity of BMSCs were decreased after induced by Dex. A plasmid of lentivirus-mediated Cx43 (Lv-Cx43) gene overexpression was established to investigate the function of Cx43 in BMSCs under the Dex treatment. Findings demonstrated that the proliferation and osteogenic differentiation abilities were enhanced after Lv-Cx43 transfected to BMSCs, and these beneficial effects of Lv-Cx43 were significantly blocked when PD988059 (an inhibitor of ERK1/2) was used. In conclusion, the overexpression of Cx43 could promote the proliferation and osteogenic differentiation of BMSCs via activating the ERK1/2 signalling pathway, which provide a basic evidence for further study on the detailed function of Cx43 in GC-ONFH.  相似文献   
316.
目的:探讨微创内固定系统治疗对股骨远端骨折患者炎症应激反应和关节功能的影响。方法:收集2011年5月-2014年5月期间于我院接受治疗的股骨远端骨折患者100例,根据手术方式不同,将患者分为观察组和对照组,每组各50例。观察组患者给予微创内固定系统治疗,而对照组患者给予股骨髁钢板内固定治疗。比较两组患者术后炎症应激反应和关节功能状况。结果:观察组患者手术时间、手术中出血量、影像学检查患者愈合时间、完全负重下地活动时间均优于对照组,两组比较差异具有统计学意义(P0.05);术后6个月及12个月,观察组患者HSS评分与Harris评分均明显高于对照组,两组比较差异具有统计学意义(P0.05);手术后观察组患者的IL-1、ACTH、E、NE水平均明显优于对照组,比较差异具有统计学意义(P0.05)。结论:微创内固定系统治疗可有效减小手术创伤以及软组织的损伤,有效缓解患者炎症应激反应,进一步促进手术后骨折的愈合,改善患者关节功能,值得临床推广。  相似文献   
317.
《Endocrine practice》2021,27(9):941-947
ObjectiveTo compare bone mineral density (BMD) changes after 12 months of treatment with denosumab or bisphosphonates in postmenopausal women with severe osteoporosis after stopping teriparatide therapy.MethodsWe retrospectively analyzed 140 postmenopausal women (mean age, 74.2 years) with severe osteoporosis who had been treated with teriparatide for 18 to 24 months at our outpatient clinic in a tertiary endocrine center between 2006 and 2015. After stopping teriparatide therapy, they continued treatment with a bisphosphonate (alendronate, risedronate, ibandronate, or zoledronic acid) or denosumab while receiving daily vitamin D and calcium. BMD at the lumbar spine (LS), total hip (TH), and femoral neck (FN) was measured by dual energy x-ray absorptiometry when teriparatide therapy was discontinued (baseline) and after 12 months of further treatment. Multivariate linear regression models were used to identify the predictors of BMD gain.ResultsAfter stopping teriparatide therapy, 70 women continued treatment with bisphosphonates and 70 received denosumab. LS, but not TH or FN, BMD gain was significantly greater in the denosumab group than in the bisphosphonates group at 12 months. Multivariate analysis showed that BMD gain at the LS was negatively associated with bisphosphonate versus denosumab treatment and positively associated with baseline serum total procollagen type I N-terminal propeptide. BMD gains at the FN were predicted by higher baseline serum urate levels. BMD gains at the TH and FN were negatively associated with pretreatment BMD gains at the same site.ConclusionTwelve months after stopping teriparatide therapy, sequential denosumab treatment appeared to yield higher additional LS BMD gain on average compared with bisphosphonates treatment.  相似文献   
318.
ABSTRACT. Rapid relaxation (shortening) of the femoral chordotonal organ in Cuniculina impigra Redtenbacher induces a depolarization followed by hyperpolarization of the fast and slow extensor tibiae motor neurons (FETi and SETi). The initial depolarization is caused by acceleration-sensitive units of the chordotonal organ. The reverse sequence of responses is induced in flexor motor neurons. The common inhibitor neuron (CI) is depolarized by both lengthening (stretch) and relaxation of the chordotonal organ.
The initial depolarization of FETi and SETi and the initial hyperpolarization of flexor motor neurons produced by rapid relaxation of the chordotonal organ and the depolarization of CI produced by lengthening of the chordotonal organ all oppose the resistance reflex response. However, these assisting components are weak compared to the resisting ones.  相似文献   
319.
The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics.  相似文献   
320.
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common orthopaedic disease. GIONFH primarily manifests clinically as hip pain in the early stages, followed by the collapse of the femoral head, narrowing of the hip joint space and damage to the acetabulum, resulting in severely impaired mobility. However, the pathogenesis of GIONFH is not clearly understood. Recently, biomechanical forces and non-coding RNAs have been suggested to play important roles in the pathogenesis of GIONFH. This study aimed to evaluate the role of biomechanical forced and non-coding RNAs in GIONFH. We utilized an in vivo, rat model of GIONFH and used MRI, μCT, GIONFH-TST (tail suspension test), GIONFH-treadmill, haematoxylin and eosin staining, qRT-PCR and Western blot analysis to analyse the roles of biomechanical forces and non-coding RNAs in GIONFH. We used RAW264.7 cells and MC3T3E1 cells to verify the role of MALAT1/miR-329-5p/PRIP signalling using a dual luciferase reporter assay, qRT-PCR and Western blot analysis. The results demonstrated that MALAT1 and PRIP were up-regulated in the femoral head tissues of GIONFH rats, RAW264.7 cells, and MC3T3E1 cells exposed to dexamethasone (Dex). Knockdown of MALAT1 decreased PRIP expression in rats and cultured cells and rescued glucocorticoid-induced osteonecrosis of femoral head in rats. The dual luciferase reporter gene assay revealed a targeting relationship for MALAT1/miR-329-5p and miR-329-5p/PRIP in MC3T3E1 and RAW264.7 cells. In conclusion, MALAT1 played a vital role in the pathogenesis of GIONFH by binding to (‘sponging’) miR-329-5p to up-regulate PRIP. Also, biomechanical forces aggravated the pathogenesis of GIONFH through MALAT1/miR-329-5p/PRIP signalling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号