首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  2023年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2009年   9篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1981年   2篇
  1978年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
31.
Food chain theory provides explicit predictions for equilibrium biomasses among trophic levels in food chains of different lengths. Empirical studies on freshwater benthic food chains have typically been performed on chains with up to three levels and in field experiments with limited spatial and temporal scale. Here we use a natural snapshot experiment approach to study equilibrium biomass and abundance among trophic levels in natural ponds differing only with respect to fish assemblage structure. Forty-four ponds were surveyed for their densityand biomass of fish, snails and periphyton. Ponds were divided into three categories based on fish assemblage: ponds with no fish (two trophic levels), ponds with molluscivorous fish (three trophic levels) and ponds that also had piscivorous fish (four trophic levels). Ponds without fish had a high density and biomass of snails and a low biomass of periphyton, whereas snails were scarce and periphyton biomass was high in ponds with molluscivorous fish. In the presence of piscivores, molluscivore populations consisted of low numbers of large individuals. Snail assemblages in piscivore ponds were characterised by relativelyhigh densities of small-bodied detritivorous species and periphyton biomass was not significantlydifferent from ponds with three trophic levels. Thus, predictions from classic food chain theory were upheld in ponds with up to three trophic levels. In ponds with four trophic levels, however, there was a decoupling of the trophic cascade at the piscivore-molluscivore level. Gape-limited piscivory, predation on snails by molluscivores that have reached an absolute size refuge from predation, and changes in food preferences of the dominant snails are suggested to explain the observed patterns.  相似文献   
32.
Shallow eutrophic lakes tend to be either in a turbid state dominated by phytoplankton or in a clear-water state dominated by submerged macrovegetation. Recent studies suggest that the low water turbidity in the clear-water state is maintained through direct and indirect effects of the submerged vegetation. This study examined what mechanisms may cause a recession of the submerged vegetation in the clear-water state, and thereby a switch to the turbid state. The spatial distribution of submerged vegetation biomass was investigated in two shallow eutrophic lakes in the clear-water state in southern Sweden. Biomass of submerged vegetation was positively correlated with water depth and wave exposure, which also were mutually correlated, suggesting that mechanisms hampering submerged vegetation were strongest at shallow and/or sheltered locations. The growth of Myriophyllum spicatum, planted in the same substrate and at the same water depth, was compared between sheltered and wave exposed sites in two lakes. After 6 weeks the plants were significantly smaller at the sheltered sites, where periphyton production was about 5 times higher than at the exposed sites. Exclosure experiments were conducted to evaluate the effects of waterfowl grazing on macrophyte biomass. Potamogeton pectinatus growth was decreased by grazing, whereas M. spicatum was not affected. The effects were greater at a sheltered than at a wave-exposed site, and also negatively related to distance from the reed belt. These results suggest that competition from epiphytes and waterfowl grazing hamper the development of submerged vegetation at sheltered and/or shallow locations. An increased strength of these mechanisms may cause a recession of submerged vegetation in shallow eutrophic lakes in the clear-water state and thereby a switch to the turbid state. Received: 24 June 1996 / Accepted: 8 September 1996  相似文献   
33.
Herbivory and intraspecific competition in a stream caddisfly population   总被引:5,自引:0,他引:5  
Summary Field experiments were conducted to assess the effects of different population densities of the herbivorous caddisfly Helicopsyche borealis on periphyton biomass and on its own growth rate in Big Sulphur Creek, a third-order stream in northern California, USA. Stream enclosures were used to vary grazer density from one-eighth to twice natural density (1/8X–2X) in two experiments (35 d and 60 d), which spanned the period of most rapid larval growth. Periphyton biomass and chlorophyll a were inversely related to grazer density. Grazer densities of 1/8X–1/2X moderately reduced periphyton when compared to an ungrazed control, whereas densities of 1X–2X greatly depleted periphyton. The growth rate of H. borealis larvae declined with increasing larval density. Growth rate was highest at densities of 1/8X–1/2X; larvae grew more slowly at 1X and showed no growth at 2X. Weekly supplementation of periphyton to 1/4X, 1X, and 2X densities significantly increased the final body mass of larvae at 1X and 2X (by 26% and 50%, respectively, compared to unsupplemented larvae) but did not change the body mass of larvae at 1/4X. These results suggest that periphyton is a limiting resource in Big Sulphur Creek and that H. borealis larvae compete exploitatively for that resource. Intraspecific competition may be an important, but often overlooked, feature of many herbivore populations in streams.  相似文献   
34.
Synopsis The feeding; habits of a group of tropical herbivorous rock-dwelling cichlid fishes from Lake Malawi, Africa, are investigated using stomach content analyses. The various species fed selectively on the periphyton of the rocky shores. Blue-green alga of the genus Calothrix was the most common item ingested by the group. Diatoms (Chrysophyta) also were abundant food items. Discriminant analysis showed that dietary items were good variables to identify species. Interspecific dietary differences showed a continuum from those species feeding primarily on Calothrix to those feeding primarily on diatoms. Algal resources exhibit distinct patterns of spatial variation. Diet was correlated with foraging behavior and trophic morphology. Interspecific differences in diet could possibly facilitate ecological coexistence among various species. Such coexistence would contribute to the maintenance of the high diversity fish faunas characteristic of the Great Rift Lakes of Africa.  相似文献   
35.
We sampled periphyton communities in a highly productive stream to characterize how longitudinal changes in watershed geology and land use affect periphyton nutrient status and elemental composition. Nutrient status was evaluated from measures of periphyton nutrient composition (carbon, nitrogen, and phosphorus), stable isotope signatures (δ15N and δ13C), and the response of periphyton to experimental enrichment with nitrogen. Biomass and nutrient content increased dramatically from the headwaters to downstream, while tissue nutrient ratios (C:P and C:N) were more consistent and did not indicate strong N- or P-limitation. Nitrogen enrichment experiments did not exhibit a consistent response upstream or downstream, and periphyton C:N:P stoichiometry showed no significant response to N-enrichment. Absolute densities of periphyton N were 5- to 90-fold greater than the overlying N concentrations in stream water (159- to 353-fold greater for P), and the δ15N signal indicates downstream enrichment from likely watershed sources (urban and agriculture land-use). These results suggest that periphyton in Spring Creek are not N-limited and store large quantities of both N and P, which in turn can be transported downstream during high flow events. Handling editor: David Hamilton  相似文献   
36.
SUMMARY

The preservation technique of critical point drying for use with the scanning electron microscope is described. A study of the periphyton community development on the aquatic macrophyte, Potamogeton pectinatus L. from the littoral zone of Swartvlei, southern Cape Province, is used to illustrate the high degree of resolution achieved using this method.  相似文献   
37.
38.
We examined the high-resolution temporal dynamics of recovery of dried periphyton crusts following rapid rehydration in a phosphorus (P)-limited short hydroperiod Everglades wetland. Crusts were incubated in a greenhouse in tubs containing water with no P or exogenous algae to mimic the onset of the wet season in the natural marsh when heavy downpours containing very low P flood the dry wetland. Algal and bacterial productivity were tracked for 20 days and related to compositional changes and P dynamics in the water. A portion of original crusts was also used to determine how much TP could be released if no biotic recovery occurred. Composition was volumetrically dominated by cyanobacteria (90%) containing morphotypes typical of xeric environments. Algal and bacterial production recovered immediately upon rehydration but there was a net TP loss from the crusts to the water in the first 2 days. By day 5, however, cyanobacteria and other bacteria had re-absorbed 90% of the released P. Then, water TP concentration reached a steady-state level of 6.6 μg TP/L despite water TP concentration through evaporation. Phosphomonoesterase (PMEase) activity was very high during the first day after rehydration due to the release of a large pre-existing pool of extracellular PMEase. Thereafter, the activity dropped by 90% and increased gradually from this low level. The fast recovery of desiccated crusts upon rehydration required no exogenous P or allogenous algae/bacteria additions and periphyton largely controlled P concentration in the water.  相似文献   
39.
We studied the recovery of periphyton and macroinvertebrate communities in a second order stream after a month-long spate that began as increased discharge due to snowmelt in April 2000 but continued through May as a result of frequent rainstorms. We sampled macroinvertebrates and periphyton in June 2000 at three different sites—an upstream site in a conifer tree plantation, a second site ca. 800 m downstream in a mixed hardwood forest, and a third site ca. 1.4 km downstream where there was an open canopy. Periphyton abundance was low on 6 June at all sites but increased 10-fold at the open canopy site the following week (13 June), appearing as a thick mat of Ulothrix. By 26 June, periphyton biomass (as both chlorophyll a and ash free dry mass) had decreased by 80% whereas densities of Chironomidae increased 50-fold and Baetidae increased 4-fold at the open canopy site; little change had occurred in periphyton and macroinvertebrate communities at the forested sites from early to late June. Our results suggest that baetids and chironomids rapidly responded to the increased algal resource at the open canopy site due to their life history characteristics and high growth rates. Chironomids decreased the green mat of Ulothrix by using this alga in tube construction and both chironomids and baetids likely consumed this alga. The varied responses of the periphyton and macroinvertebrate communities at the forested versus open sites demonstrate a resistance to impacts by floods at the forested sites, whereas at the open canopy site periphyton and macroinvertebrate communities were more resilient to the flood disturbance. Handling editor: R. Bailey  相似文献   
40.
Spatio-temporal variation of plant populations often can demonstrate synchronous patterns, particularly within highly connected landscapes. Periphyton biomass (chlorophyll a) and net accumulation were measured at five sites in a spring-fed fourth-order stream located in central Pennsylvania with a mixed land-uses watershed (Spring Creek, USA) to characterize longitudinal variation within the stream. Samples were collected at three-week intervals over one year to describe seasonal patterns of periphyton biomass and net production (n = 17 per site). Spring Creek periphyton biomass and net accumulation increased dramatically from the headwaters to downstream (range 10–1,000 mg/m2). The downstream reaches had exceptionally large algal biomass (chlorophyll a > 300 mg/m2) and potential for rapid turnover. Varying degrees of seasonality were observed among the sites, with upstream sites showing more temporal variation but no distinct seasonal pattern. Despite this, large-scale disturbances within the watershed seem to promote synchrony among sites throughout the stream as reflected by close correlations in chlorophyll values (Pearson correlation coefficient r > 0.50).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号