首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1608篇
  免费   369篇
  国内免费   40篇
  2024年   9篇
  2023年   54篇
  2022年   75篇
  2021年   107篇
  2020年   129篇
  2019年   152篇
  2018年   79篇
  2017年   91篇
  2016年   89篇
  2015年   85篇
  2014年   105篇
  2013年   137篇
  2012年   114篇
  2011年   98篇
  2010年   57篇
  2009年   43篇
  2008年   44篇
  2007年   68篇
  2006年   50篇
  2005年   34篇
  2004年   47篇
  2003年   34篇
  2002年   20篇
  2001年   25篇
  2000年   45篇
  1999年   28篇
  1998年   27篇
  1997年   22篇
  1996年   26篇
  1995年   17篇
  1994年   10篇
  1993年   19篇
  1992年   10篇
  1991年   9篇
  1990年   1篇
  1989年   14篇
  1988年   7篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   7篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有2017条查询结果,搜索用时 31 毫秒
141.
OBJECTIVE : Significant myocardial apoptosis occurs in ischemia/reperfused hearts. However, the contribution of apoptosis to the development of myocardial injury remains controversial. The present study attempted to obtain evidence that inhibition of apoptosis at early reperfusion can reduce myocardial infarction after prolonged reperfusion. METHODS : Adult male rats were subjected to 30 min ischemia and 4 (apoptosis assay) or 24 h (myocardial infarction determination) of reperfusion and treated with vehicle, SB 239063, insulin or insulin plus wortmannin. RESULTS : Treatment with SB 239063 or insulin markedly decreased myocardial apoptosis (10.6 +/- 1.5% and 7.9 +/- 0.9% respectively, P < 0.01 vs. vehicle) and significantly reduced infarct size (43 +/- 3.6% and 35 +/- 2.9%, respectively, P < 0.01 vs. vehicle). Most interestingly, inhibition of insulin signaling with wortmannin to block insulin signaling not only blocked insulin's anti-apoptotic effect, but also abolished its infarct reduction property. CONCLUSION : These data indicate that apoptosis contributes to the development of myocardial infarction, and inhibition of apoptosis at early reperfusion reduces the myocardial infarction.  相似文献   
142.
Huang YF  Gong KZ  Zhang ZG 《生理学报》2003,55(4):454-458
建立培养乳鼠心肌细胞的缺氧/复氧(A/R)损伤模型和缺氧预处理(APC)模型,以细胞存活率、细胞内超氧化物趋化酶(SOD)活性、丙二醛(MDA)含量、培养上清液乳酸脱氢酶(LDH)活性作为反映心肌细胞损伤的指标。采用细胞外信号调节蛋白激酶(ERK1/2)抑制剂PD98059及丝裂素活化蛋白激酶p38α/β(p38α/β)阻滞剂SB203580干预模型,并以胶内原位磷酸化法测定ERK1/2和p38活性,借以探讨ERK1/2和p38α/β在缺氧预处理保护机制中的作用。结果表明:(1)在APC组,于预处理的缺氧时相给予PD98059,可以完全消除APC的延迟保护作用;在A/R组的缺氧时相加入PD98059对细胞损伤无影响;(2)在APC组的预处理缺氧时相给予p38α/β抑制剂SB203580并不能消除APC的保护作用,而在A/R组的持续缺氧时相给予SB203580则可显著减轻缺氧对细胞的损伤;(3)ERK1/2和p38总活性测定表明,缺氧可激活ERK1/2和p38,它们的活性在缺氧后4h时达到高峰,而经过APC处理后,两者活性高峰提前于缺氧后3h时出现,且峰值显著降低。上述结果提示,预处理过程中ERK1/2的激活可能是缺氧预处理延迟保护机制中细胞信号传递的重要环节,预处理阶段p38α/β的活化不参与APC诱导的延迟保护信号传递过程,p38的过度激活可能是缺氧/复氧损伤过程中的一个致损伤参与因素,而预处理抑制随后持续缺氧阶段p38的过度激活可能是其保护机制的一个环节。  相似文献   
143.
自发性高血压大鼠心肌和血管组织牛磺酸的转运障碍   总被引:2,自引:0,他引:2  
Shi YR  Qi YF  Bu DF  Gao L  Wang DY  Jiang HF  Pang YZ  Tang CS 《生理学报》2002,54(5):359-364
在自发性高血压大鼠(SHR)的心肌和主动脉血管组织上观察牛磺酸(taurine)转运和牛磺酸转运体(taurine transporter,TAUT) mRNA 的改变,结果显示,与对照组WKY大鼠相比,SHR组血浆牛磺酸水平和牛磺酸释放量增加,而心肌和血管组织牛磺酸水平和TAUT mRNA含量均降低,牛磺酸最大转运速率(Vmax)分别低24%和35%(P<0.05),米氏常数(Km)值分别高16%和39%(P<0.05),这些结果提示,SHR的心肌和血管组织牛磺酸转运障碍可能与TAUT活性和亲和力降低及TAUT基因水平的下调有关。  相似文献   
144.
Cardiac-specific overexpression of murine cardiac calsequestrin results in depressed contractile parameters and hypertrophy in transgenic mice. To determine the long-term consequences of calsequestrin overexpression, the cardiac phenotype of young (2–3-months old) and aged (17 months old) transgenic FVB/N mice was characterized. Ventricular/body weight ratios, which were increased in young transgenics compared with wild-types, were unaltered with age. Left atria of aged transgenics exhibited enlargement and mineralization, but their ventricles did not display fibrosis, mineralization and other injuries. Although echocardiography suggested a time-dependent change in ventricular geometry and loading conditions in vivo, as well as an age-dependent reduction of left ventricular fractional shortening in transgenic mice, Langendorff-perfused hearts of young and aged transgenics indicated that there were no age-related reductions of contractile parameters (±dP/dt). Furthermore, neither genotype nor age altered lung/body weight ratios. Thus, our findings suggest that left ventricular performance in calsequestrin overexpressing mice becomes apparently depressed with age, but this depression is not associated with progressive reduction of left ventricular contractility and heart failure.  相似文献   
145.
Insulin improves contractile function after ischemia, but does not increase glucose uptake in the isolated working rat heart. We tested the hypothesis that the positive inotropic effect of insulin is independent of the signaling pathway responsible for insulin-stimulated glucose uptake. We inhibited this pathway at the level of phosphatidyl inositol 3-kinase (PI3K) with wortmannin. Hearts were perfused for 70 min at physiological workload with Krebs-Henseleit buffer containing [2-3H] glucose (5 mM, 0.05 Ci/ml) and oleate (0.4 mM, 1% BSA) in the presence (WM, n = 5) or absence (control, n = 7) of wortmannin (WM, 3 mol/L). After 20 min, hearts were subjected to 15 min of total global ischemia followed by 35 min of reperfusion. Insulin (1 mU/ml) was added at the beginning of reperfusion (WM + insulin n = 8, insulin n = 8). Cardiac power before ischemia was 8.1 ± 0.7 mW. Recovery of contractile function after ischemia was significantly increased in the presence of insulin (73.5 ± 8.9% vs. 38.5 ± 6.7%, p < 0.01). The addition of wortmannin completely abolished the effect of insulin on recovery (32.6 ± 6.4%). Glucose uptake was 1.84 ± 0.32 mol/min/g dry before ischemia and was slightly elevated during reperfusion (2.68 ± 0.35 mol/min/g dry, n.s.). Insulin did not affect postischemic glucose uptake. In the presence of wortmannin, glucose uptake was lowest during reperfusion (n.s.). The results suggest that PI3K is involved in the insulin-induced improvement in postischemic recovery of contractile function. This effect of insulin is independent of its effect on glucose uptake.  相似文献   
146.
The aim of our study was to evaluate whether a single dose of cerivastatin at the time of admission of patients with unstable angina pectoris (UAP) or non-Q-wave myocardial infarction (NQMI) can influence the serum level of C-reactive protein (CRP), interleukin-6 (IL-6) and interleukin-8 (IL-8) 24 h later. Forty-four patients with rest chest pain and subendocardial ischemia on ECG were randomized to receive cerivastatin 0.3 mg at the time of admission (group C+) to standard therapy or to remain just on standard therapy (group C–). Blood samples for determination of troponin I (TI), CRP, IL-6 and IL-8 were collected at admission (entry level) and 24 h later (final level). Patients with non-physiological baseline levels of TI, as well as patients with progression to Q wave MI were excluded. All baseline, clinical and demographic data and final values of TI were comparable in the two groups. In patients treated with cerivastatin (group C+, n = 13) we observed decrease in the CRP level (–6.73 ± 3.93 mg/L); on the other hand, in group C– (n = 17) the CRP level increased (+7.92 ± 2.77 mg/L, p = 0.004). Similar differences were observed also in IL-6: in group C+ the level was significantly reduced as compared with the increase in group C– (–0.76 ± 0.52 vs. 4.58 ± 1.49 ng/L, p = 0.005). The level of IL-8 was not affected. Our results suggest that early treatment with cerivastatin can decrease the serum level of CRP and IL-6 in patients with UAP/NQMI; this might positively influence their prognosis. Nevertheless, further studies are needed to support this hypothesis.  相似文献   
147.
The proinflammatory cytokines interleukin (IL)-1 and IL-6 are increased after acute myocardial infarction (MI). Moreover, serum IL-6 level is elevated after MI, but has also been associated with heart failure. In the present study, heart function was monitored in a rat model of chronic MI. Cytokine expression in the infarcted and non-infarcted myocardium as well as in hearts of sham-operated controls was measured by the ribonuclease-protection assay. To identify the cells contributing to the increased cytokine expression, we further analyzed myocytes and non-myocytes isolated in the acute phase as well as during congestive heart failure (CHF) after MI. There was a strong induction in cytokine expression in the myocytes of the infarct area 6 h after MI. In the non-infarcted myocardium, cytokine expression increased only slightly in the non-myocytes after 6 h. This was not different from sham-operated controls and may, therefore, be induced by stress and catecholamines. In CHF, however, cytokine expression level in myocytes was normal. It increased slightly but significantly in the non-myocytes 4 and 8 weeks after MI. In conclusion, we suggest that pro-inflammatory cytokines, produced by the ischemic myocytes may be involved in the initiation of wound healing of the necrotic area, whereas the effect of pro-inflammatory cytokines in CHF, if any, seems not to be crucial.  相似文献   
148.
We have recently shown that the protective mechanism of ischemic preconditioning (PC) is impaired in the myocardium that survived infarction and underwent postinfarct ventricular remodeling. In this study, we examined the hypothesis that failure of PC to activate PKC- underlies the refractoriness of the remodeling heart to PC. Circumflex coronary arteries were ligated in rabbits to induce infarction and subsequent ventricular remodeling, and only sham operations were performed in controls. Hearts were isolated before (i.e. 4 days later) or after (i.e. 2 weeks later) remodeling of the left ventricle and used for isolated buffer-perfused heart experiments. Myocardial infarction was induced in isolated hearts by 30 min global ischemia/2 h reperfusion, and its size was measured by tetrazolium staining. Using separate groups of hearts, tissue biopsies were taken before and after PC, and PKC translocation was assessed by Western blotting. Areas infarcted in vivo by coronary ligation (CL) were excluded from subsequent infarct size/PKC analyses. In the hearts 4 days after CL, PC with 2 cycles of 5 min ischemia/5 min reperfusion induced PKC- translocation from cytosol to particulate fractions and limited infarct size to 40% of control value. In the hearts remodeled 2 weeks after CL, PC failed to induce PKC- translocation and infarct size limitation. In this group, PKC activity and hemodynamic responses to adenosine were similar to those in sham-operated controls. When remodeling after CL was prevented by valsartan infusion (10 mg/kg/day), an angiotensin II type 1 (AT1) receptor blocker, PC could induce both infarct limitation and PKC- translocation. The present results suggest that persistent activation of AT1 receptors during remodeling disturbed the PC signaling between G proteins and PKC-, which underlies the refractoriness of the remodeled myocardium to PC.  相似文献   
149.
Growth factors and hormones may play an autocrine/paracrine role in mechanical stress-induced cardiac hypertrophy. Using an in vitro model of mechanical stress, i.e. stretch of cardiomyocytes and cardiac fibroblasts, we tested the involvement of growth factors and hormones in this process.We found that conditioned medium (CM) derived from 4 h cyclicly (1 Hz) stretched cardiomyocytes increased the rate of protein synthesis in static cardiomyocytes by 8 ± 3%. Moreover, CM derived from 2 h stretched fibroblasts increased the rate of protein synthesis in static fibroblasts as well as in static cardiomyocytes by 8 ± 2 and 6 ± 2%, respectively. Analysis of CM using size-exclusion HPLC showed that cardiomyocytes and fibroblasts released at least three factors with MW 10 kD, their quantities being time-dependently increased by stretch. Subsequent analyses using immunoassays revealed that cardiomyocytes released atrial natriuretic peptide (ANP) and transforming growth factor-beta1 (TGF1) being increased by 45 ± 17 and 21 ± 4% upon 4 h of stretch, respectively. Fibroblasts released TGF1 and very low quantity of endothelin-1 (ET-1). The release of TGF1 was significantly increased by 18 ± 4% after 24 h of stretch in fibroblasts. Both cell types released no detectable amount of angiotensin II (Ang II).In conclusion, upon cyclic stretch cardiomyocytes and fibroblasts secrete growth factors and hormones which induce growth responses in cardiomyocytes and fibroblasts in an autocrine/paracrine way. TGF secreted by cardiomyocytes and fibroblasts, and ANP secreted by cardiomyocytes are likely candidates. We found no evidence for the involvement of Ang II and ET-1 in autocrine/paracrine mechanisms between cardiac cell types.  相似文献   
150.
Myocardial infarction is the most common cause of congestive cardiac failure. Free radicals, cytokines, nitric oxide (NO) and antioxidants play a major role both in atherosclerosis and myocardial damage and preservation. In the early stages of atherosclerosis, neutrophils and monocytes infiltrate the intima and generate free radicals which damage the endothelial cells. As a result, production of NO and prostacyclin by the endothelial cells declines, which have cardioprotective actions. This also has relevance to the beneficial action of aspirin since, it can modulate both prostanoid and l-arginine-NO systems and NF-kB translocation. In both acute myocardial infarction and chronic congestive cardiac failure, the plasma levels of various inflammatory mediators such as interleukins and tumour necrosis factor- (TNF) are elevated. TNF, produced by the inflammatory cells and the myocardium, can suppress myocardial contractility and induce the production of free radicals, which in turn can further damage the myocardium. Transforming growth factor (TGF), polyunsaturated fatty acids and the glucose-insulin-potassium regimen can antagonize the harmful actions of TNF and protect the myocardium. This explains why efforts made to reduce the levels of pro-inflammatory cytokines have beneficial action and preserve the myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号