首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55142篇
  免费   3976篇
  国内免费   3184篇
  62302篇
  2024年   77篇
  2023年   676篇
  2022年   1209篇
  2021年   1357篇
  2020年   1240篇
  2019年   1621篇
  2018年   1627篇
  2017年   1160篇
  2016年   1332篇
  2015年   1916篇
  2014年   2804篇
  2013年   3827篇
  2012年   2051篇
  2011年   2856篇
  2010年   2277篇
  2009年   2888篇
  2008年   3095篇
  2007年   3153篇
  2006年   2874篇
  2005年   2833篇
  2004年   2493篇
  2003年   2225篇
  2002年   2061篇
  2001年   1369篇
  2000年   1163篇
  1999年   1254篇
  1998年   1257篇
  1997年   1057篇
  1996年   844篇
  1995年   942篇
  1994年   867篇
  1993年   775篇
  1992年   680篇
  1991年   488篇
  1990年   398篇
  1989年   368篇
  1988年   384篇
  1987年   345篇
  1986年   284篇
  1985年   334篇
  1984年   452篇
  1983年   301篇
  1982年   300篇
  1981年   189篇
  1980年   175篇
  1979年   148篇
  1978年   87篇
  1977年   49篇
  1976年   45篇
  1975年   30篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
921.
乙型肝炎病毒X基因及HBx蛋白的研究进展   总被引:6,自引:0,他引:6  
我国是乙型肝炎高发区,乙型肝炎病毒(HBV)X基因及其编码的多功能蛋白HBx是乙型肝炎病毒基因转录所必需的作用因子,在乙肝的致病过程中起到重要作用。HBx可直接或间接改变肝脏结构细胞的结构和功能,引发肝脏细胞的凋亡;具有广泛的非特异性反式激活作用,反式激活细胞内的某些癌基因或病毒基因,与乙型肝炎和肝细胞癌的发生关系十分密切。本文从多方面综述了X基因及HBx蛋白目前的研究进展,展现了X基因功能的多样性。  相似文献   
922.
目的:探讨丙型肝炎病毒(HCV)不同基因型C蛋白在HepG2细胞中的基因表达。方法:分别构建能在HepG2细胞表达HCV-1b、HCV-2a和HCV-4d等3种基因型C蛋白的重组体,将Affymetrix公司人基因芯片HG-U133A和HG-U133B用于本研究。结果:3种C蛋白均可引起不同基因上调和下调改变。3种C蛋白表达如两两相比,有若干相同基因表达改变;如三者相比,有PPM1A、TNNI2、ZNF236、FSCN1基因表达出现相同改变。结论:HCV不同基因型C蛋白所引起的基因表达谱各有特征,主要涉及分子转运、信号转导、致病或癌基因等,这对从基因表达层面认识HCVC蛋白的功能及HCV致病机制均有重大帮助。  相似文献   
923.
Virulent H5N1 strains of influenza virus often harbor a D92E point mutation in the nonstructural protein NS1. This crucial mutation has been correlated with increased virulence and/or cytokine resistance, but the structural implications of such a change are still unclear. Furthermore, NS1 protein could also be a potential target for the development of novel antiviral agents against H5N1 strains. Therefore, a reasonable 3D model of H5N1 NS1 is important for the understanding of the molecular basis of increased virulence and the design of novel antiviral agents. Based on the crystal structure of a non-H5N1 NS1 protein, a model of H5N1 NS1 was developed by homology modeling, molecular mechanics and molecular dynamics simulations. It was found that the D92E mutation could result in weakened interactions of the carboxylate side chain with other phosphorylated residues, thereby activating phosphorylation of NS1. Figure Superposition of snapshots picked from the two molecular dynamic (MD) trajectories: a H5N1 NS1 homology model and b non-H5N1 NS1 crystal structure after 0 (green ribbon), 5 (blue ribbon) and 10 ns (pink ribbon) MD simulation  相似文献   
924.
To obtain an anti-tumor peptide of Tumstatin and detect its biological activity, the nucleotide sequence encoding 185–203 amino acids (19peptide) of Tumstatin was synthesized and inserted into the fusion protein vector pTYB2. After identification by sequencing and restriction endonucleases, the recombined vector was transformed into BL-21 (DE3) E. coli competent cells. Transformed E. coli BL-21 (DE3) were induced by isopropyl-β-thiogalactopyranoside (IPTG), and then expressed. By 1,4-dithiothreitol (DTT) reduction, the soluble 19peptide was obtained from a chitin affinity chromatograph. The biological activity of 19peptide was determined by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenytetrazolium bromide (MTT) assay, cell growth curve, the effect of the ascitic fluid transfevent H22 hepatoma on mice and via histopathological slices. The purified 19peptide directly inhibited proliferation and migration of murine B16 melanoma cells, SMMC-7721hepatoma carcinoma cells and human umbilical vein endothelial cells (HUVEC). The tumor inhibition rate of mice ascitic fluid transfevent H22 hepatoma was 48.46%. Histopathological slices showed that it could promote tumor tissue necrosis and decrease the density of blood vessels. With higher anti-tumor activity, 19peptide has the potential to become a novel, potent anti-tumor agent. Translated from Chinese Journal of Biochemistry and Molecular Biology, 2005, 21(3): 322–328 [译自: 中国生物化学与分子生物学学报]  相似文献   
925.
Bladder cancer-associated protein gene (BLCAP) is a novel candidate tumor suppressor gene identified from the human bladder carcinoma. Our previous studies have shown that BLCAP overexpression could inhibit cell growth by inducing apoptosis in HeLa cells [Zuo Z, Zhao M, Liu J, Gao G, Wu X: Tumor Biol 27: 221–226, 2006]. Such evidence suggests the alterations in BLCAP may play an important role in tumorigenesis. To further study the biological function of the BLCAP gene, we constructed a recombinant retroviral vector encoding BLCAP cDNA. Overexpressed BLCAP, via stable infection of exogenous BLCAP, resulted in growth inhibition of the human tongue cancer cell line Tca8113 in vitro, accompanied by S phase cell cycle arrest and apoptosis. The growth inhibition was correlated with up-regulation of p21WAF1/CIP1 expression and down-regulation of Bcl-XL and Bcl-2 expressions. However, p53 expression and NF-κB activity remained unchanged post infection. Furthermore, no changes in p53 phosphorylation at Ser46 and nuclear localization, which are critical to p53 function, were observed in BLCAP-overexpressed cells. Taken together, BLCAP may play a role not only in regulating cell proliferation but also in coordinating apoptosis and cell cycle via a novel way independent of p53 and NF-κB. Jun Yao and Li Duan contributed equally to this work.  相似文献   
926.
We investigated the effect of chromium (20–40 g m−3, 8–72 h) on the photosystem 2 (PS2) activities of Chlorella pyrenoidosa cells. By using chlorophyll fluorescence transients, thermoluminescence, oxygen polarography, and Western blot analysis for D1 protein we found that inhibition of PS2 can be accounted for by the enhanced photodestruction of the reaction centres in the cells cultivated in the presence of Cr(VI) at 25 °C in “white light” (18 W m−2). Hence photodestruction of D1 is caused by an enhanced oxidative stress and lipid peroxidation, as indicated by the appearance of a high-temperature thermoluminescence band.  相似文献   
927.
Using immunogold electron microscopy, we have investigated the relative distribution of two types of vacuolar sorting receptors (VSR) and two different types of lumenal cargo proteins, which are potential ligands for these receptors in the secretory pathway of developing Arabidopsis embryos. Interestingly, both cargo proteins are deposited in the protein storage vacuole, which is the only vacuole present during the bent-cotyledon stage of embryo development. Cruciferin and aleurain do not share the same pattern of distribution in the Golgi apparatus. Cruciferin is mainly detected in the cis and medial cisternae, especially at the rims where storage proteins aggregate into dense vesicles (DVs). Aleurain is found throughout the Golgi stack, particularly in the trans cisternae and trans Golgi network where clathrin-coated vesicles (CCVs) are formed. Nevertheless, aleurain was detected in both DV and CCV. VSR-At1, a VSR that recognizes N-terminal vacuolar sorting determinants (VSDs) of the NPIR type, localizes mainly to the trans Golgi and is hardly detectable in DV. Receptor homology-transmembrane-RING H2 domain (RMR), a VSR that recognizes C-terminal VSDs, has a distribution that is very similar to that of cruciferin and is found in DV. Our results do not support a role for VSR-At1 in storage protein sorting, instead RMR proteins because of their distribution similar to that of cruciferin in the Golgi apparatus and their presence in DV are more likely candidates. Aleurain, which has an NPIR motif and seems to be primarily sorted via VSR-At1 into CCV, also possesses putative hydrophobic sorting determinants at its C-terminus that could allow the additional incorporation of this protein into DV.  相似文献   
928.
929.
Glutamate, a major excitatory neurotransmitter in the CNS, plays a critical role in neurological disorders such as stroke and Parkinson's disease. Recent studies have suggested that glutamate excess can result in a form of cell death called glutamate-induced oxytosis. In this study, we explore the protective effects of necrostatin-1 (Nec-1), an inhibitor of necroptosis, on glutamate-induced oxytosis. We show that Nec-1 inhibits glutamate-induced oxytosis in HT-22 cells through a mechanism that involves an increase in cellular glutathione (GSH) levels as well as a reduction in reactive oxygen species production. However, Nec-1 had no protective effect on free radical-induced cell death caused by hydrogen peroxide or menadione, which suggests that Nec-1 has no antioxidant effects. Interestingly, the protective effect of Nec-1 was still observed when cellular GSH was depleted by buthionine sulfoximine, a specific and irreversible inhibitor of glutamylcysteine synthetase. Our study further demonstrates that Nec-1 significantly blocks the nuclear translocation of apoptosis-inducing factor (a marker of caspase-independent programmed cell death ) and inhibits the integration of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (a pro-death member of the Bcl-2 family) into the mitochondrial membrane. Taken together, these results demonstrate for the first time that Nec-1 prevents glutamate-induced oxytosis in HT-22 cells through GSH related as well as apoptosis-inducing factor and Bcl-2/adenovirus E1B 19 kDa-interacting protein 3-related pathways.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号