排序方式: 共有23条查询结果,搜索用时 12 毫秒
11.
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is
responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive post-translational
modifications of MBP is dynamic during normal central nervous system (CNS) development and during myelin degeneration in multiple
sclerosis (MS), affecting its interactions with the myelin membranes and with other molecules. In particular, the degree of
deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes
neurodegeneration due to autoimmune attack. That the degree of MBP deimination is also high in early CNS development indicates
that this modification plays major physiological roles in myelin assembly. In this review, we describe the structural and
functional consequences of MBP deimination in healthy and diseased myelin.
Special issue dedicated to Drs. Anthony and Celia Campagnoni. 相似文献
12.
Joyce J.B.C. van Beers Albert J.W. Zendman Reinout Raijmakers Judith Stammen-Vogelzangs Ger J.M. Pruijn 《Biochimie》2013
Citrullination, the conversion of peptidylarginine to peptidylcitrulline is catalyzed by peptidylarginine deiminases (PAD). The expression of PAD isoforms displays great variation among different tissues as demonstrated by PAD mRNA analyses. Here we have analyzed the differential expression of PAD2, PAD4 and PAD6 in mouse tissues at the protein level and by enzymatic activity assays using PAD2 and PAD4 knock-out strains. As expected, no PAD2 expression was detected in the PAD2−/− mice. In contrast, the PAD4 protein was observed in several tissues of the PAD4 knock-out mice, albeit at reduced levels in most tissues, and are therefore referred to as PAD4-low mice. In material from PAD2−/− mice, except for leukocyte lysates, hardly any PAD activity was found and no citrullinated proteins were detected after incubation in the presence of calcium. PAD activity in the PAD4-low mice was similar to that in wild-type mice. In both PAD knock-out strains the expression of PAD6 appeared to be up-regulated in all tissues analyzed, with the exception of spleen and testis. Our data demonstrate that the PAD2 protein is expressed in brain, spinal cord, spleen, skeletal muscle and leukocytes, but not detectably in liver, lung, kidney and testis. PAD4 was detected in each of these tissues, although the expression levels varied. In all tissues where PAD2 was detected, except for blood cells, this PAD isoform appeared to be responsible for virtually all peptidylarginine deiminase activity. 相似文献
13.
Peptidylarginine deiminase (PAD), which catalyzes the deimination of the guanidino group from peptidylarginine residues, belongs to a superfamily of guanidino group modifying enzymes that have been shown to produce an S-alkylthiouronium ion intermediate during catalysis. Thiol-directed reagents iodoacetamide and iodoacetate inactivate recombinant PAD, and substrate protects the enzyme from inactivation. Activity measurements together with peptide mapping by mass spectrometry of PAD modified in the absence and presence of substrate demonstrated that cysteine-351 is modified by iodoacetamide. The pKa value of the cysteine residue, 7.7 ± 0.2 as determined by iodoacetamide modification, agrees well with a critical pK value identified in pH rate studies. The role of cysteine-351 in catalysis was tested by site-directed mutagenesis in which the cysteine was replaced with serine to eliminate the proposed nucleophilic interaction. Binding studies carried out using fluorescence spectrometry established the structural integrity of the C351S PAD. However, the C351S PAD variant was catalytically inactive, exhibiting <0.01% wild-type activity. These results indicate that Cys 351 is a nucleophile that initiates the enzymatic reaction. 相似文献
14.
Messenger RNAs located in myelin sheath assembly sites 总被引:2,自引:0,他引:2
The targeting of mRNAs to specific subcellular locations is believed to facilitate the rapid and selective incorporation of their protein products into complexes that may include membrane organelles. In oligodendrocytes, mRNAs that encode myelin basic protein (MBP) and select myelin-associated oligodendrocytic basic proteins (MOBPs) locate in myelin sheath assembly sites (MSAS). To identify additional mRNAs located in MSAS, we used a combination of subcellular fractionation and suppression subtractive hybridization. More than 50% of the 1,080 cDNAs that were analyzed were derived from MBP or MOBP mRNAs, confirming that the method selected mRNAs enriched in MSAS. Of 90 other cDNAs identified, most represent one or more mRNAs enriched in rat brain myelin. Five cDNAs, which encode known proteins, were characterized for mRNA size(s), enrichment in myelin, and tissue and developmental expression patterns. Two of these, peptidylarginine deiminase and ferritin heavy chain, have recognized roles in myelination. The corresponding mRNAs were of different sizes than the previously identified mRNA, and they had tissue and development expression patterns that were indistinguishable from those of MBP mRNA. Three other cDNAs recognize mRNAs whose proteins (SH3p13, KIF1A, and dynein light intermediate chain) are involved in membrane biogenesis. Although enriched in myelin, the tissue and developmental distribution patterns of these mRNAs differed from those of MBP mRNA. Six other cDNAs, which did not share significant sequence homology to known mRNAs, were also examined. The corresponding mRNAs were highly enriched in myelin, and four had tissue and developmental distribution patterns indistinguishable from those of MBP mRNA. These studies demonstrate that MSAS contain a diverse population of mRNAs, whose locally synthesized proteins are placed to contribute to myelin sheath assembly and maintenance. Characterization of these mRNAs and proteins will help provide a comprehensive picture of myelin sheath assembly. 相似文献
15.
Ishigami A Ohsawa T Asaga H Akiyama K Kuramoto M Maruyama N 《Archives of biochemistry and biophysics》2002,407(1):25-31
Peptidylarginine deiminases (PADs) are posttranslational modification enzymes that convert protein arginine to citrulline residues in a calcium ion-dependent manner. Rodents have four isoforms of PAD (types I, II, III, and IV), each of which is distinct in substrate and tissue specificity. In fact, the only tissue in which all four PAD mRNAs have been detected is the epidermis. In this study, we found PAD activity in HSC-1 human cutaneous squamous carcinoma cells in vitro, and this activity increased during cultivation. Using a homology-based strategy, we cloned a full-length cDNA encoding human PAD type II. The cDNA was 2348 bp long and encoded a 665-amino-acid sequence with a predicted molecular mass of 75 kDa. The predicted protein shared 93% identity with the rat and mouse PAD type II sequence. Alignment of the amino acid sequences from both species revealed notable conservation in the C-terminal region, suggesting the presence of a functional region such as an enzyme catalytic site and/or a calcium-binding domain. Gene organization analysis established that human PAD type II on chromosome 1p35.2-p35.21 spanned more than 50 kb and contained 16 exons and 15 introns. A recombinant PAD protein subsequently produced in Escherichia coli proved to be enzymatically active, with substrate specificities similar to those of the rat PAD type II. In an immunohistochemical study of human skin, the type II enzyme was expressed by all the living epidermal layers, suggesting that PAD type II is functionally important during terminal differentiation of epidermal keratinocytes. 相似文献
16.
Zendman AJ Raijmakers R Nijenhuis S Vossenaar ER Tillaart Mv Chirivi RG Raats JM van Venrooij WJ Drijfhout JW Pruijn GJ 《Analytical biochemistry》2007,369(2):232-240
Members of the family of peptidylarginine deiminases (PADs, EC 3.5.3.15) catalyze the posttranslational modification of peptidylarginine into peptidylcitrulline. Citrulline-containing epitopes have been shown to be major and specific targets of autoantibodies produced by rheumatoid arthritis patients. Recently, the citrullination of histone proteins by PAD enzyme was reported to influence gene expression levels. These findings greatly increase the interest in the PAD enzymes and their activities. A few procedures to monitor PAD activity in biological samples have been described previously. However, these assays either have low sensitivity or are rather laborious. Here we describe a reliable and reproducible method for the determination of PAD activity in both purified and crude samples. The method is based on the quantification of PAD-dependent citrullination of peptides, immobilized in microtiter plates, using antibodies that are exclusively reactive with the reaction product(s). Our results demonstrate that this antibody-based assay for PAD activity, called ABAP, is very sensitive and can be applied to monitor PAD activity in biological samples. 相似文献
17.
A simple, continuous spectrophotometric assay for peptidylarginine deiminase (PAD) is described. Deimination of peptidylarginine results in the formation of peptidylcitrulline and ammonia. The ammonia released during peptidylarginine hydrolysis is coupled to the glutamate-dehydrogenase-catalyzed reductive amination of alpha-ketoglutarate to glutamate and reduced nicotinamide adenine dinucleotide (NADH) oxidation. The disappearance of absorbance at 340nm due to NADH oxidation is continuously measured. The specific activity obtained by this new protocol for highly purified human PAD is comparable to that obtained by a commonly used colorimetric procedure, which measures the ureido group of peptidylcitrulline by coupling with diacetyl monoxime. The present continuous spectrophotometric method is highly sensitive and accurate and is thus suitable for enzyme kinetic analysis of PAD. The Ca(2+) concentration for half-maximal activity of PAD obtained by this method is comparable to that previously obtained by the colorimetric procedure. 相似文献
18.
Sigrun Lange Eridan Rocha‐Ferreira Laura Thei Priyanka Mawjee Kate Bennett Paul R. Thompson Venkataraman Subramanian Anthony P. Nicholas Donald Peebles Mariya Hristova Gennadij Raivich 《Journal of neurochemistry》2014,130(4):555-562
Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post‐translational modification caused by Ca+2‐regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue‐specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan‐PAD inhibitor Cl‐amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS‐treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl‐amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug‐directed intervention in neurotrauma.
19.
《Saudi Journal of Biological Sciences》2022,29(4):2573-2581
Porphyromonas gingivalis, the cause of periodontitis, is also linked to many systemic disorders due to its citrullination capability from a unique peptidyl arginine deiminase (PPAD). Protein citrullination is able to trigger an autoimmune response, increasing the severity of rheumatoid arthritis. The main objective of this study is to evaluate the inhibitory activity of Cratoxylym cochinchinense leaves extract towards the PPAD in vitro and in silico. Methanolic extract of Cratoxylum cochinchinense (CCM) was tested for total phenolic and flavonoid contents along with antioxidative assays. Inhibition of PPAD activities was conducted thereafter using recombinant PPAD in cell lysate. Phytocompounds postulated present in the CCM such as mangiferin, vismiaquinone A, δ-tocotrienol and α-tocotrienol and canophyllol were used as ligands in a simulated docking study against PPAD. Results obtained indicated high antioxidant potential in CCM while recording abundant phenolic (129.0 ± 2.5495 mg GA/g crude extract) and flavonoid (159.0 ± 2.1529 mg QE/g crude extract) contents. A dose-dependent inhibition of PPAD was observed when CCM was evaluated at various concentrations. CCM at 1 mg/mL exhibited citrulline concentration of 24.37 ± 3.25 mM which was 5 times lower than the negative control (114.23 ± 3.31 mM). Molecular docking simulation revealed that mangiferin and vismiaquinone A engaged in H-bonding and pi-pi interactions with important active site residues (Asp130, Arg152, Arg154 and Trp127) of PPAD and could be the potential phytochemicals that accounted for the inhibitory activities observed in the methanolic leaves extract. As such, CCM could be further explored for its therapeutic properties not only for periodontitis, but also for other systemic diseases like rheumatoid arthritis. 相似文献
20.
Hsu CY Henry J Raymond AA Méchin MC Pendaries V Nassar D Hansmann B Balica S Burlet-Schiltz O Schmitt AM Takahara H Paul C Serre G Simon M 《The Journal of biological chemistry》2011,286(26):23222-23233
Filaggrin-2 (FLG2), a member of the S100-fused type protein family, shares numerous features with filaggrin (FLG), a key protein implicated in the epidermal barrier functions. Both display a related structural organization, an identical pattern of expression and localization in human epidermis, and proteolytic processing of a large precursor. Here, we tested whether FLG2 was a substrate of calpain 1, a calcium-dependent protease directly involved in FLG catabolism. In addition, deimination being critical for FLG degradation, we analyzed whether FLG2 deimination interfered with its proteolytic processing. With this aim, we first produced a recombinant form of FLG2 corresponding to subunits B7 to B10 fused to a COOH-terminal His tag. Incubation with calpain 1 in the presence of calcium induced a rapid degradation of the recombinant protein and the production of several peptides, as shown by Coomassie Blue-stained gels and Western blotting with anti-FLG2 or anti-His antibodies. MALDI-TOF mass spectrometry confirmed this result and further evidenced the production of non-immunoreactive smaller peptides. The degradation was not observed when a calpain 1-specific inhibitor was added. The calpain cleavage sites identified by Edman degradation were regularly present in the B-type repeats of FLG2. Moreover, immunohistochemical analysis of normal human skin revealed colocalization of FLG2 and calpain 1 in the upper epidermis. Finally, the FLG2 deiminated by human peptidylarginine deiminases was shown to be more susceptible to calpain 1 than the unmodified protein. Altogether, these data demonstrate that calpain 1 is essential for the proteolytic processing of FLG2 and that deimination accelerates this process. 相似文献