首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
21.

Background

Mitochondria play essential roles in the life and death of almost all eukaryotic cells, ranging from single-celled to multi-cellular organisms that display tissue and developmental differentiation. As mitochondria only arose once in evolution, much can be learned from studying single celled model systems such as yeast and applying this knowledge to other organisms. However, two billion years of evolution have also resulted in substantial divergence in mitochondrial function between eukaryotic organisms.

Scope of Review

Here we review our current understanding of the mechanisms of mitochondrial protein import between plants and yeast (Saccharomyces cerevisiae) and identify a high level of conservation for the essential subunits of plant mitochondrial import apparatus. Furthermore, we investigate examples whereby divergence and acquisition of functions have arisen and highlight the emerging examples of interactions between the import apparatus and components of the respiratory chain.

Major conclusions

After more than three decades of research into the components and mechanisms of mitochondrial protein import of plants and yeast, the differences between these systems are examined. Specifically, expansions of the small gene families that encode the mitochondrial protein import apparatus in plants are detailed, and their essential role in seed viability is revealed.

General significance

These findings point to the essential role of the inner mitochondrial protein translocases in Arabidopsis, establishing their necessity for seed viability and the crucial role of mitochondrial biogenesis during germination. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   
22.
VanX is a d-alanyl-d-alanine (d-Ala–d-Ala) dipeptidase encoded in the vancomycin-resistance vanA gene cluster. Here we report that strong bacteriolysis occurred when isolated VanX was expressed in Escherichia coli at temperatures lower than 30 °C, which was unexpected because the vanA operon confers vancomycin resistance by protecting the cell wall. Therefore, we monitored cell lysis by measuring sample turbidity with absorbance at 590 nm and VanX expression using SDS-PAGE. No cell lysis was observed when VanX was expressed, even in large quantities, in the cell inclusion bodies at 37 °C, suggesting that a natively folded VanX is required for lysis. In addition, VanX mutants with suppressed dipeptidase activity did not lyse E. coli cells, confirming that bacteriolysis originated from the dipeptidase activity of VanX. We also observed shape changes in E. coli cells undergoing VanX-mediated lysis with optical microscopy and classified these changes into three classes: bursting, deformation, and leaking fluid. Optical microscopic image analysis fully corroborated our interpretation of the turbidity changes in the samples. From a practical perspective, the finding that VanX expressed in isolation induces cell lysis suggests that inhibitors of VanA and VanH that act downstream from VanX could provide a new class of therapeutic chemicals against bacteria expressing the vancomycin-resistance gene cluster.  相似文献   
23.
Pestiviruses, a group of enveloped positive strand RNA viruses belonging to the family Flaviviridae, express their genes via a polyprotein that is subsequently processed by proteases. The structural protein region contains typical signal peptidase cleavage sites. Only the site at the C terminus of the glycoprotein Erns is different because it does not contain a hydrophobic transmembrane region but an amphipathic helix functioning as the Erns membrane anchor. Despite the absence of a hydrophobic region, the site between the C terminus of Erns and E1, the protein located downstream in the polyprotein, is cleaved by signal peptidase, as demonstrated by mutagenesis and inhibitor studies. Thus, ErnsE1 is processed at a novel type of signal peptidase cleavage site showing a different membrane topology. Prevention of glycosylation or introduction of mutations into the C-terminal region of Erns severely impairs processing, presumably by preventing proper membrane interaction or disturbing a conformation critical for the protein to be accepted as a substrate by signal peptidase.  相似文献   
24.
Trematodes, also known as flukes, are phylogenetically ancient parasitic organisms. Due to their importance as human and veterinary parasites, their proteins have been investigated extensively as drug and vaccine targets. Among those, proteases, as crucial enzymes for parasite survival, are considered candidate molecules for anti-parasitic interventions. Surprisingly however, trematode serine proteases, in comparison with other groups of proteases, are largely neglected. Genes encoding serine proteases have been identified in trematode genomes in significant abundance, but the biological roles and biochemical functions of these proteases are poorly understood. However, increasing volumes of genomic and proteomic studies, and accumulated experimental evidence, indicate that this class of proteases plays a substantial role in host–parasite interactions and parasite survival. Here, we discuss in detail serine proteases at genomic and protein levels, and their known or hypothetical functions.  相似文献   
25.
Summary A cloned DNA fragment, carrying the gene for peptidase D (pepD) of Escherichia coli, was partially sequenced. By purification of peptidase D and sequence determination of an amino-terminal oligopeptide the reading frame of the pepD gene, starting with a GTG initiator codon, was unambiguously identified.An overlap of the established nucleotide sequence with the previously sequenced 5 flanking region of the gpt gene allowed the exact distance between pepD and gpt to be calculated. The two genes are pointing towards each other and are separated by 260 bp. A search for open reading frames (ORFs) and the analysis of possible codon usage in the intercistronic region indicate the absence of an additional gene (lpcA) between pepD and gpt.  相似文献   
26.
Degradation of Melanotropin Inhibiting Factor by Brain   总被引:2,自引:2,他引:0  
Degradation of melanotropin inhibiting factor (MIF) was measured by fluorometry, using pareptide as an internal standard, following the separation of the dansyl derivatives of MIF and its metabolites by HPLc. MIF was not split by carboxypeptidases A and B, prolidase, or pyroglutamate aminopeptidase. It was hydrolyzed by leucine aminopeptidase, aminopeptidase M, and carboxypeptidase Y. Rat brain hydrolyzed 159 nmol of MIF per mg of protein per h; the activity was linear with enzyme concentration. Hydrolysis start from the N-terminal end, as shown by the appearance of proline as the first metabolite of the MIF degradation, followed by leucine, glycinamide, leucylglycine, and glycine. Activity in the rat brain regions was in the order striatum, medulla oblongata > cortex, hippocampus, midbrain > hypothalamus, cerebellum, and pituitary. The enzyme was mostly in the supernatant, with significant amounts in the myelin and synaptosomal fractions. MIF aminopeptidase could be separated from carboxypeptidase by centrifugation at 30,000 x g for 20 min and precipitation with 45--75% (NH4)2SO4. It showed pH optima in the alkaline range (8.25 and 8.75) and was inhibited by EDTA, EGTA, SQ 14,225, puromycin, bacitracin, and bestatin.  相似文献   
27.
Inactivation of substance P and its C-terminal hexapeptide analog [p-Glu6]substance P6–11 was studied in rat parotid and hypothalamic slices. It was found that in the parotid slice system the decay of substance P induced K+ release occurs concurrently with a decrease in the biologically active concentration of the peptide in the medium. The inactivation was further studied using [p-Glu6]substance P6–11 as substrate in the parotid and in the hypothalamic slice systems. In both tissue preparations the hexapeptide is degraded to small peptide fragments by metalloendopeptidase. Separation of the peptide fragments by high performance liquid chromatography and determination of their amino acid composition showed that in the hypothalamic slice system the major cleavage of the hexapeptide analog occurs between Phe8-Gly9 with minor cleavage sites between Phe7-Phe8 and Gly9-Leu10. In the rat parotid slice system the major cleavage occurs between Gly9-Leu10 with a minor cleavage site between Phe7-Phe8. The degradation of the hexapeptide analog in the hypothalamic system was inhibited 77% and 67% by treatment with 1 mM p-chloromercuriphenylsulfonate and p-chloromercuribenzoate, respectively, whereas in the parotid system these reagents inhibited the degradation of the hexapeptide only by 15% and 8%. These results may indicate that different proteases in the parotid and hypothalamus are involved in degradation of substance P. Kinetic studies, including the use of various inhibitors as well as competition by the peptide hormones somatostatin, LHRH, TRH and Leu-enkephalin-NH2, revealed that in both tissues the hexapeptide analog is a preferred substrate for degradation by protease of considerable specificity towards the C-terminal sequence of substance P. It is suggested that this metalloendopeptidase may be important in the termination of the substance P response.  相似文献   
28.
Schistosome invasive stages, cercariae, leave intermediate snail hosts, penetrate the skin of definitive hosts, and transform to schistosomula which migrate to the final location. During invasion, cercariae employ histolytic and other bioactive products of specialized holocrine secretory cells – postacetabular (PA) and circumacetabular (CA) penetration glands. Although several studies attempted to characterize protein composition of the in vitro-induced gland secretions in Schistosoma mansoni and Schistosoma japonicum, the results were somewhat inconsistent and dependent on the method of sample collection and processing. Products of both gland types mixed during their secretion did not allow localization of identified proteins to a particular gland. Here we compared proteomes of separately isolated cercarial gland cells of the avian schistosome Trichobilharzia szidati, employing laser-assisted microdissection and shotgun LC-MS/MS, thus obtaining the largest dataset so far of the representation and localization of cercarial penetration gland proteins. We optimized the methods of sample processing with cercarial bodies (heads) first. Alizarin-pre-stained, chemically non-fixed samples provided optimal results of MS analyses, and enabled us to distinguish PA and CA glands for microdissection. Using 7.5 × 106 μm3 sample volume per gland replicate, we identified 3347 peptides assigned to 792 proteins, from which 461 occurred in at least two of three replicates in either gland type (PA = 455, 40 exclusive; CA = 421, six exclusive; 60 proteins differed significantly in their abundance between the glands). Peptidases of five catalytic types accounted for ca. 8% and 6% of reliably identified proteins in PA and CA glands, respectively. Invadolysin, nardilysin, cathepsins B2 and L3, and elastase 2b orthologs were the major gland endopeptidases. Two cystatins and a serpin were highly abundant peptidase inhibitors in the glands. While PA glands generally had rich enzymatic equipment, CA glands were conspicuously abundant in venom allergen-like proteins.  相似文献   
29.
We explored furin substrate requirements in addition to the motif R-X-K/R-R using synthetic fluorescent resonance energy transfer (FRET) decapeptides. These decapeptides were derived from furin cleavage sites in viral coat glycoproteins and human and bacterial protein precursors. The hydrolysis by furin of most substrate was activated by K+ ion, whereas kosmotropic anions of the Hofmeister series were inhibitors. The analysis of furin hydrolytic activity showed that its efficiency is highly dependent on the particular combinations of amino acids at different substrate positions. There is a clear interdependence of furin subsites that must be taken in account in determining its specificity and also for the design of inhibitors. However, clear preferences were detected for substrates with S at P1′, and V at P2′, at P3′ the amino acids D, S, L and A are almost equally frequent. In the non-prime subsites the best substrates presented S and H at P6; basic amino acids at P5; and no clear tendency at P3. Interestingly, two amino acid substitutions on the prime side of the peptide derived from H5N1 influenza hemagglutinin furin processing site highly improved its hydrolysis. These modifications are possible by single point mutations, suggesting a potential yield of a more infectious virus.  相似文献   
30.
The role of the unique fully conserved tryptophan in metallopeptidase family M49 (dipeptidyl peptidase III family) was investigated by site-directed mutagenesis on human dipeptidyl peptidase III (DPP III) where Trp300 was subjected to two substitutions (W300F and W300L). The mutant enzymes showed thermal stability equal to the wild-type DPP III. Conservative substitution of the Trp300 with phenylalanine decreased enzyme activity 2-4 fold, but did not significantly change the Km values for two dipeptidyl 2-naphthylamide substrates. However, the Km for the W300L mutant was elevated 5-fold and the kcat value was reduced 16-fold with Arg-Arg-2-naphthylamide. Both substitutions had a negative effect on the binding of two competitive inhibitors designed to interact with S1 and S2 subsites.These results indicate the importance of the aromatic nature of W300 in DPP III ligand binding and catalysis, and contribution of this residue in maintaining the functional integrity of this enzyme’s S2 subsite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号