首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2964篇
  免费   151篇
  国内免费   145篇
  2023年   33篇
  2022年   32篇
  2021年   49篇
  2020年   69篇
  2019年   55篇
  2018年   36篇
  2017年   57篇
  2016年   65篇
  2015年   50篇
  2014年   85篇
  2013年   158篇
  2012年   65篇
  2011年   72篇
  2010年   50篇
  2009年   66篇
  2008年   81篇
  2007年   98篇
  2006年   74篇
  2005年   65篇
  2004年   62篇
  2003年   83篇
  2002年   66篇
  2001年   63篇
  2000年   69篇
  1999年   63篇
  1998年   60篇
  1997年   85篇
  1996年   79篇
  1995年   91篇
  1994年   67篇
  1993年   98篇
  1992年   93篇
  1991年   96篇
  1990年   82篇
  1989年   98篇
  1988年   100篇
  1987年   92篇
  1986年   103篇
  1985年   85篇
  1984年   74篇
  1983年   37篇
  1982年   48篇
  1981年   52篇
  1980年   40篇
  1979年   40篇
  1978年   18篇
  1977年   13篇
  1976年   20篇
  1975年   7篇
  1973年   5篇
排序方式: 共有3260条查询结果,搜索用时 31 毫秒
71.
Summary A 15.2 kb DNA fragment was isolated from Rhodobacter capsulatus (ex. Rhodopseudomonas capsulata), which was able to complement mutations both in a nifA-like regulatory gene and in the nifH gene. Physical mapping of this fragment revealed that the nifA-like gene was adjacent to, and downstream from, the nifHDK operon. Hybridization experiments were carried out using a cloned Klebsiella pneumoniae DNA fragment containing nifA and the flanking portions of nifB and nifL. This fragment failed to hybridize with a 2.15 kb HindIII fragment of R. capsulatus DNA containing the nifA-like gene, but hybridized instead with a 2.6 kb EcoRI fragment adjacent to the nifA-like gene. The homologous region was found to be located within the K. pneumoniae nifB gene. The adjacent 2.6 kb and 2.15 kb fragments also hybridized with each other, indicating the presence of repeated sequences in this region.  相似文献   
72.
Cytometry and flow cytometry were used to study characteristics of fluorescence of the DNA-DAPI complex in nuclei released from different fresh and formaldehyde-fixed pea ( Pisum sativum L. cv. Lincoln) tissues. The two methods of isolation are compared and discussed as well as their possible use for quantitative analysis of DNA in plant tissues. With fixed tissues it is possible to obtain a number of nuclei sufficient for the flow cytometric analysis, even using small amounts of plant tissue.  相似文献   
73.
Summary The symbiotic association of the water fernAzolla with the blue-green algaAnabaena azollae can fix 30–60 kg N ha–1 per rice cropping season. The value of this fixed N for rice production, however, is only realized once the N is released from theAzolla biomass and taken up by the rice plants. The availability of N applied asAzolla or as urea was measured in field experiments by two15N methods. In the first,Azolla caroliniana (Willd.) was labelled with15N in nutrient solution and incorporated into the soil at a rate of 144 kg N ha–1. The recovery ofAzolla-N in the above ground parts of rice [Oryza sativa (L) cv. Nucleoryza] was found to be 32% vs. 26% for urea applied at a rate of 100 kg N/ha; there was no significant difference in recovery. In the second, 100 kg N/ha of15N-urea was applied separately or in combination with either 250 or 330 kg N ha–1 of unlabelledAzolla. At the higher rate, the recovery ofAzolla-N was significantly greater than that of urea. There was a significant interaction when both N sources were applied together, which resulted in a greater recovery of N from each source in comparison to that source applied separately. Increasing the combined urea andAzolla application rate from 350 kg N ha–1 to 430 kg N ha–1 increased the N yield but had no effect on the dry matter yield of rice plants. The additional N taken up at the higher level of N application accumulated to a greater extent in the straw compared to the panicles. Since no assumptions need to be made about the contribution of soil N in the method using15N-labelledAzolla, this method is preferable to the15N dilution technique for assessing the availability ofAzolla-N to rice. Pot trials usingAzolla stored at –20°C or following oven-drying showed that both treatments decreased the recovery of N by one third in comparison to freshAzolla.  相似文献   
74.
S. Sarig  Y. Kapulnik  Y. Okon 《Plant and Soil》1986,90(1-3):335-342
Summary Inoculation of naturally nodulatedPisum sativum L. (garden pea) withAzospirillum in the greenhouse caused a significant increase in nodule numbers above controls. Field inoculation of garden peas in the winter 1981–1982 andCicer arietinum L. (chick pea), in winter 1982–1983, withAzospirillum one week after plant emergence, produced a significant increase in seed yield, but did not affect plant dry matter yield. ForVicia sativa L. (vetch) grown in soil in the greenhouse and in the field for forage, winter 1980–1981, inoculation significantly increased dry matter yield, %N, N-content, and acetylene reduction (nitrogen fixation) activity. InHedysarum coronarium L. (sulla clover), winter 1981–1982, inoculated with both its specificRhizobium (by the slurry method) andAzospirillum, 7 days after emergence, there was an increase in acetylene reduction above controls inoculated withRhizobium alone. These results suggest that it is possible, under conditions tested in this work, to increase nodulation, nitrogen fixation, and crop yields of winter legumes by inoculation withAzospirillum.  相似文献   
75.
Summary N2-fixing cyanobacteria occur in symbiotic associations with fungi (ascomycetes) as lichens and with a few green plants. The associated cyanobacterium is always a species ofNostoc orAnabaena. Only a small number of plant genera are involved but there is a remarkable range of host diversity. Associations occur with several bryophytes (e.g.Anthoceros, Blasia, Cavicularia), a pteridophyte (Azolla), cycads (nine genera includingMacrozamia andEncephalartos) and an angiosperm (Gunnera). Except forGunnera, where the cyanobacterium penetrates the plant cells, the cyanobacteria are extracellular with specialized morphological modifications and/or structures of the host plant organs providing an environment which facilitates interaction with the prokaryote.Salient aspects of current knowledge pertaining to the establishment, perpetuation, and functioning of the individual symbioses are summarized. Where possible this includes information concerning recognition and specificity, mode(s) of infection, morphological modifications/adaptations of the host plant and a synopsis of morphological, physiological and biochemical changes common to the symbiotic cyanobacteria. The latter encompasses heterocyst frequencies, enzymes involved in ammonia assimilation, photosynthetic capability and metabolic interaction with the host.TheAzolla-Anabaena symbioses, which have potential agronomic significance as an alternative nitrogen source and maintain continuity with the endophyte through the sexual cycle, are emphasized.  相似文献   
76.
Summary Six carbamate pesticides namely 1-naphthol, sevin, dimetilan, trematan, NaDDC and dymid were studied to see their effect on nodulation and nitrogen fixation inPisum sativum andVigna sinensis. Low concentrations of the pesticides have little effect on nodulation and nitrogen fixation, whereas higher concentrations adversely effect these processes. The results also indicate that then sensitivity depends upon the species of the Rhizobium and also the type of the pesticide. Pesticides belonging to the carbamate group differ in their capacity to affect nodulation and nitroge fixation.  相似文献   
77.
Summary Isotope dilution provides a method for measuring plant competition for mineral N and transfer of biologically fixed N from a legume to a grass. A plant growth medium was enriched with15N, and used to grow Siratro (Macropitilium atropurpureum D.C. Urb.) and Kleingrass 75 (Panicum coloratum L.) in 20 liter pots for 98 days in a glasshouse. The plants were grown in pure stand and in mixtures. When grown in 50∶50 mixture the grass obtained 59% of the labelled N and the legume obtained 41%. The grass produced nearly as much root mass as the legume even though biomass of the shoots were less than half that of the legume. Reducing the proportion of either plant species in the mixture reduced the proportion of the mineralized N absorbed by that species. The shoots of the grass were significantly more enriched (1.166 atom%15N excess) than the roots (1.036). The grass received 12% of its N as biologically fixed N from the legume.  相似文献   
78.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   
79.
Summary Remobilization of15N from vegetative tissue of mungbean (Vigna radiata (L.) Wilczek) into pods was measured during the reproductive phase of growth. Plant tissue was labelled with15N during vegetative development. Experiments were conducted in the field at two sites. At one site the soil provided cowpeas with most of their N but at the other site N fixation provided most of the N. Remobilized N from vegetative tissue to pods occurred soon after they began to develop. The quantity of the labelled N ultimately remobilized to the pods amounted to 50% for one cultivar (Tx33) at the high soil N site and 70% at the low N site. For the other cultivar (Tx13) the values were 25% and 30%, respectively. The two cultivars performed very differently with respect to partitioning of N into pods and the rate of N fixation. Even though more N was accumulated in the shoots of the high N fixing cultivar (Tx13) less total N was contained in the pods.  相似文献   
80.
Summary Non-symbiotic heterotrophic N2 fixation in coniferous bark litter was investigated with the acetylene reduction assay under aerobic and anaerobic conditions. The litter studied was composed essentially of bark, of pH 5 and a C/N ratio of 101; the ratio of available C to available N, which governs N2 fixation, was considerably higher. The rate of N2 fixation was estimated as 2.5–4.4 g N. g–1 dry wt. day–1. Nitrogenase activity was still evident after seven months of incubation under aerobic conditions. The N2-ase activity was O2 dependent: under anaerobic conditions no N2-ase activity was found unless a fermentable C source was added. The importance of N2 fixation in N-poor litter for the maintenance of soil fertility is emphasized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号