首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   7篇
  国内免费   5篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2018年   4篇
  2017年   5篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   11篇
  2006年   13篇
  2005年   4篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   10篇
  1999年   10篇
  1998年   9篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   11篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1971年   1篇
排序方式: 共有234条查询结果,搜索用时 31 毫秒
71.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition.  相似文献   
72.
We recorded, for the first time, byssal hairs in the Asian freshwater bivalve Limnoperna fortunei from the Paraná River system. We analysed the presence of hairs and their distribution on the shell in relation to habitat and shell size in 12 sites. Hairs were present in lentic habitats associated with macrophytes or organic matter, but were absent in lotic environments. The proportion of mussels with hairs was negatively correlated with current velocity. Hairs were more frequent and abundant in larger mussels. In general, the hairs are a similar length over the bivalve and almost entirely cover the shells in≥60% in lentic habitats. The projections allow L. fortunei to be camouflaged among the roots of macrophytes or coarse organic matter, assisting in avoiding visual predators. The clear-cut separation of L. fortunei populations into two different groups could be associated with phenotypic plasticity in this species.  相似文献   
73.

Background

Strigolactones (SLs) – a group of plant hormones and their derivatives – have been found to play a role in the regulation of root development, in addition to their role in suppression of lateral shoot branching: they alter root architecture and affect root-hair elongation, and SL signalling is necessary for the root response to low phosphate (Pi) conditions. These effects of SLs have been shown to be associated with differential activation of the auxin and ethylene signalling pathways.

Scope

The present review highlights recent findings on the activity of SLs as regulators of root development, in particular in response to low Pi stress, and discusses the different hormonal networks putatively acting with SLs in the root''s Pi response.

Conclusions

SLs are suggested to be key regulators of the adaptive responses to low Pi in the root by modulating the balance between auxin and ethylene signalling. Consequently, they impact different developmental programmes responsible for the changes in root system architecture under differential Pi supply.  相似文献   
74.
北京幽灵蛛体表微感受器的类型、结构和分布   总被引:2,自引:1,他引:1  
北京幽灵蛛(Pholcus beijingensis)体表的微感受器包括毛状感受器(触毛、听毛、味觉毛和刺)、裂缝状感受器(单个裂缝器、竖琴器)和跗节器等.扫描电镜观察显示,北京幽灵蛛体表的毛状感受器数量最多,分布最广;其次是裂缝感受器;此外,每个跗节末端具有一个跗节器.除触毛在整个身体表面均有分布外,其他毛状感受器(...  相似文献   
75.
76.
77.
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map‐based cloning revealed that the rth5 gene encodes a monocot‐specific NADPH oxidase. RNA‐Seq, in situ hybridization and qRT‐PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild‐type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA‐Seq analysis of 6‐day‐old rth5 versus wild‐type primary roots revealed significant over‐representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups ‘response to oxidative stress’ and ‘cellulose biosynthesis’ were most prominently represented.  相似文献   
78.
Although the taphonomic (post-mortem) degradation processes relevant to teeth and bones have been well described, those taking place with regards to mammalian hairs have not been characterized to the same extent. This present article describes, in detail, microscopic changes resulting from the actions of biological agents that digest and degrade hairs. The most noteworthy and prevalent agents responsible for the destruction of hair structure are fungi, which use a range of strategies to invade and digest hairs. One of the most important finds to emerge from this study is that taphonomic structures and processes can easily be interpreted by the unwary as ‘real’, or as class characteristics for a particular animal taxon. Moreover, under certain conditions, ‘taphonomic’ processes normally associated with the dead are also present on the hairs of the living. This work will improve the reliability of hair examinations in forensic, archaeological and palaeontological applications—in addition, the finding has relevance in the protection of mammalian collections susceptible to infestation. This article also addresses the popular myth that ancient peoples were often red-haired and discusses phenomena responsible for this observation. Insights gained from detailed characterization of taphonomic processes in 95 hairs from a variety of species demonstrate the range and breadth of degradative effects on hair structure and colour. Lastly, the study demonstrates that hairs often tell a story and that there is value of extracting as much morphological data as possible from hairs, prior to destructive sampling for biomolecules.  相似文献   
79.
The functional groups of plants that characterize different phases of succession are expected to show differences in root distribution, fine‐root traits and degrees of association with arbuscular mycorrhizal (AM) fungi. The relationship involving fine‐root traits and AM fungi that regulate the nutrient acquisition potential among different plant functional groups are still not well understood. We assessed fine‐root morphology, AM fungal variables and soil fertility in grassland, secondary forest and mature forest in Atlantic, Araucaria and Pantanal ecosystems in Brazil. Soil cores were collected at 0–10 and 10–20 cm depths. Fine roots were extracted from soil by sieving and root morphological traits and AM colonization were determined. The AM spores were extracted from soil and counted. In all ecosystems, soil fertility, fine‐root mass and root diameter increased with the succession, while root length, specific root length, root‐hair length, root‐hair incidence, AM colonization and AM spore density decreased. These results suggest that plant species from early stages of tropical succession with inherent rapid growth invest in fine roots and maintain a high degree of AM colonization in order to increase the capacity for nutrient acquisition. Conversely, fine root morphological characteristics and low degree of AM colonization exhibited by plants of the later stages of succession lead toward a low nutrient uptake capacity that combine with their typical low growth rates. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号