首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  61篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1993年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
31.
Methane production was studied in an Italian rice field over two consecutive years (1998, 1999) by measuring the rates of total and acetate-dependent methanogenesis in soil and root samples. Population dynamics of methanogens were followed by terminal restriction fragment length polymorphism and real-time PCR targeting archaeal SSU rRNA genes. Rates of total and acetate-dependent methanogenesis in soil increased during the season, reached a maximum at about 70-80 days after flooding and then decreased again. In contrast, the size of the archaeal community remained relatively constant. Therefore, the seasonal changes in the methanogenic processes were probably not caused by changes in the size of the methanogenic community but in its activity. During the 1998/1999 winter period, a slight decrease in archaeal cell numbers was found. In both years, the dominant groups were methanogens affiliated with Rice cluster I, Methanosaetaceae, Methanosarcinaceae and Methanobacteriaceae. Correspondence analysis showed, however, that the archaeal community structure was different in 1998 and 1999. Methanogens with potential acetoclastic activity made up a larger fraction of the total archaeal community in 1999 (32-53%) than in 1998 (20-32%). Furthermore, the frequency of Methanosaetaceae relative to Methanosarcinaceae was significantly higher in 1999 than in 1998. This difference could be explained by the much lower soil acetate concentrations in 1999, to which Methanosaetaceae are physiologically better adapted than Methanosarcinaceae. Over the season, however, the composition of the archaeal community remained relatively constant and thus did not reflect the observed seasonal change in CH(4) production activity. The analysis of rice root samples in 1999 showed that the archaeal community structure on the roots was similar to that in soil but with acetoclastic methanogens being relatively less common. This observation is in agreement with domination of CH(4) production by H(2)/CO(2)-dependent methanogenesis on roots. Our study provided a link between size, structure and function of the methanogenic community in an Italian rice field.  相似文献   
32.
Liu H  Yi Q  Liao Y  Feng J  Qiu M  Tang L 《Gene》2012,501(2):153-163
A systems understanding of mechanical regulation is critical for determining how cells proliferate and differentiate. To better understand the biological process in which mechanical signals regulate cells, we globally investigated the gene expression profiling via long serial analysis of gene expression (Long SAGE) in osteoblasts after exposure to mechanical stretching. The analysis showed that the differentially expressed genes were related with many physiological processes, including signal transduction, cell proliferation and apoptosis. Several genes that were seldom or never studied in osteoblasts have been found in this study. We further analyzed the signal pathways and provided gene regulatory networks activated by mechanical signals. Many changed genes in our data were contributed to ECM-integrin-FAK mediated pathway and mainly influenced actin-cytoskeleton dynamic remodeling, cell proliferation and differentiation. We also provided evidence supporting the hypothesis that endoplasmic reticulum and mitochondrion were combined to dedicate to calcium regulation. Taken together, our experiments provided a systemic view on biological processes and mechanotransduction network in osteoblasts, suggesting that mechanical signals regulate osteoblast through a greater diversity of interactions and pathways than previously appreciated.  相似文献   
33.
Acute lethal cytotoxicity of microcystin-LR (MC-LR), a toxin produced by fresh-water cyanobacteria, has been attributed to protein phosphatases type 1 and type 2A (PP1/PP2A) inhibition and reactive oxygen species (ROS) generation. However, the effects and molecular mechanisms of prolonged, sublethal MC-LR exposure are less known. We studied mice intraperitonealy injected with saline or 25 μg MC-LR/kg for 28 days (every 2 days). MC-LR induced apoptosis in liver and not in kidneys or heart of treated animals. Liver also showed decreased α-tubulin levels (45.56% ± 7.65% of controls) and activation of p38-MAPK and CaMKII pathways (137.93% ± 11.64% and 419.35% ± 67.83% of the control group, respectively). PP1/PP2A activity decreased from 1.82 ± 0.23 (controls) to 0.91 ± 0.98 mU/mg (MC-LR-treated mice); however, no difference in total Ser/Thr phosphatase activity was found between both the groups. The results demonstrated that apoptosis and cytoskeleton disruption contributed to the hepatic cytotoxic effects of subchronic MC-LR administration. These effects occurred in association with sustained activation of signaling cascades and development of compensatory mechanisms to maintain total Ser/Thr phosphatase activity.  相似文献   
34.
Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.  相似文献   
35.
36.
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to ~1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication.  相似文献   
37.
The iron–sulfur cluster protein ISCU is a scaffold protein tasked with the building and mediation of iron–sulfur [Fe–S]-clusters. These are crucial for [Fe–S]-enzymes, which are involved in essential biological cell processes like metabolism or ion transport. Analysis of ISCU in rainbow trout (Oncorhynchus mykiss) and maraena whitefish (Coregonus maraena) revealed the existence of two gene variants in each of the two salmonids. This study presents the characterization of the duplicated ISCU cDNA sequences in both species as well as the comparative functional analysis of the genes in healthy and affected fish of two rainbow trout strains differing in trait robustness under regional aquaculture conditions. Coding sequences of trout ISCUA and ISCUB genes are spanning over five exons. Open reading frames (ORF) of trout (ISCUA: 495 bp, ISCUB: 498 bp) and whitefish (ISCUA and ISCUB: 495 bp) genes encode for evolutionary highly conserved proteins and share 72% sequence similarity with human ISCU.  相似文献   
38.
39.
Exoelectrogens are distinct from other bacteria owing to their unique extracellular electron transfer (EET) abilities that allow for anaerobic respiration with various external redox-active surfaces, including electrode and metal oxides. Although the EET process is known to trigger diverse extracellular redox reactions, the reverse impact has been long overlooked. Recent evidences show that exoelectrogens can sense the potential changes of external surfaces and alter their EET strategies accordingly, which imparts them remarkable abilities in adapting to diverse and redox-variable environment. This mini-review provides a condensed overview and critical analysis about the recent discoveries on redox-dependent EET pathways of exoelectrogens, with focus on Geobacter sulfurreducens and Shewanella oneidensis. We summarize the detailed responses of various EET components, analyze the drives and mechanisms of such responses, highlight the diversity of EET dynamics among different bacterial species and under integrated effects of redox potential and surface chemistry, and discusses the future research needs.  相似文献   
40.
Current concepts in apoptosis: The physiological suicide program revisited   总被引:7,自引:0,他引:7  
Apoptosis, or programmed cell death (PCD), involves a complex network of biochemical pathways that normally ensure a homeostatic balance between cellular proliferation and turnover in nearly all tissues. Apoptosis is essential for the body, as its deregulation can lead to several diseases. It plays a major role in a variety of physiological events, including embryonic development, tissue renewal, hormone-induced tissue atrophy, removal of inflammatory cells, and the evolution of granulation tissue into scar tissue. It also has an essential role in wound repair. The various cellular and biochemical mechanisms involved in apoptosis are not fully understood. However, there are two major pathways, the extrinsic pathway (receptor-mediated apoptotic pathway) and the intrinsic pathway (mitochondria-mediated apoptotic pathway), which are both well established. The key component in both is the activation of the caspase cascade. Caspases belong to the family of proteases that ultimately, by cleaving a set of proteins, cause disassembly of the cell. Although the caspase-mediated proteolytic cascade represents a central point in the apoptotic response, its initiation is tightly regulated by a variety of other factors. Among them, Bcl-2 family proteins, TNF and p53 play pivotal roles in the regulation of caspase activation and in the regulation of apoptosis. This review summarizes the established concepts in apoptosis as a physiological cell suicide program, highlighting the recent and significant advances in its study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号