首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1993年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
21.

Background

Radiofrequency catheter ablations of anteroseptal (AS) accessory pathways (AP) in pediatric patients have higher incidence of atrioventricular (AV) block than other AP locations. We report our experience using cryoablation in pediatric patients where a His bundle electrogram was noted on the ablation catheter at the site of the successful ablation.

Methods and Results

We retrospectively reviewed all patients ≤21 years that underwent cryoablation for an AS AP from 2005 to 2012 at our institution (n=70). Patients with a His bundle electrogram noted on the cryoablation catheter at the location of the successful lesion were identified (n=6, 8.5%). All six patients had ventricular preexcitation. Median age of 15.9 years (7.2 - 18.2). AV nodal function was monitored during the cryoablation with intermittent rapid atrial pacing conducted through the AV node (n=2), with atrial extra-stimulus testing (n=2), or during orthodromic reentrant tachycardia (n=2). Acute success occurred in all patients. Two patients had early recurrence of AP conduction. Both patients underwent a second successful cryoablation, again with a His bundle electrogram on the cryoablation catheter. At a median follow-up of 13 months (3 to 37 months) there was no recurrence of accessory pathway conduction and AVN function was normal.

Conclusion

In a small number of pediatric patients with AS AP with a His bundle electrogram seen on the ablation catheter, the use of cryotherapy was safe and effective for elimination of AP conduction without impairment of AV nodal conduction.  相似文献   
22.
Plastics are widely used in modern life, and their unbound chemicals bisphenol A and phthalates can leach out into the surrounding environment. BPA and PAEs have recently attracted the special attention of the scientific community, regulatory agencies and the general public because of their high production volume, widespread use of plastics, and endocrine-disrupting effects. In The Comparative Toxicogenomics Database, BPA and five most frequently curated PAEs (DEHP/MEHP and DBP/BBP/MBP) were found to have 1932 and 484 interactions with genes/proteins, respectively. Five of their top ten toxicity networks were found to be involved in inflammation, and their top ten diseases included genital, prostatic, endomentrial, ovarian and breast diseases. BPA and PAEs were found to exhibit similar toxicogenomics and adverse effects on human health owning to their 89 common interacting genes/proteins. These 89 genes/proteins may serve as biomarkers to assay the toxicities of different chemicals leached out from the widely used plastics.  相似文献   
23.
Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Qiuyang Zhang, Jun Wu, and AnhThu Nguyen made equal contributions to this work.  相似文献   
24.
Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database (https://www.wikipathways.org/index.php/Pathway:WP5158). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-022-00672-4.  相似文献   
25.
Methane production was studied in an Italian rice field over two consecutive years (1998, 1999) by measuring the rates of total and acetate-dependent methanogenesis in soil and root samples. Population dynamics of methanogens were followed by terminal restriction fragment length polymorphism and real-time PCR targeting archaeal SSU rRNA genes. Rates of total and acetate-dependent methanogenesis in soil increased during the season, reached a maximum at about 70-80 days after flooding and then decreased again. In contrast, the size of the archaeal community remained relatively constant. Therefore, the seasonal changes in the methanogenic processes were probably not caused by changes in the size of the methanogenic community but in its activity. During the 1998/1999 winter period, a slight decrease in archaeal cell numbers was found. In both years, the dominant groups were methanogens affiliated with Rice cluster I, Methanosaetaceae, Methanosarcinaceae and Methanobacteriaceae. Correspondence analysis showed, however, that the archaeal community structure was different in 1998 and 1999. Methanogens with potential acetoclastic activity made up a larger fraction of the total archaeal community in 1999 (32-53%) than in 1998 (20-32%). Furthermore, the frequency of Methanosaetaceae relative to Methanosarcinaceae was significantly higher in 1999 than in 1998. This difference could be explained by the much lower soil acetate concentrations in 1999, to which Methanosaetaceae are physiologically better adapted than Methanosarcinaceae. Over the season, however, the composition of the archaeal community remained relatively constant and thus did not reflect the observed seasonal change in CH(4) production activity. The analysis of rice root samples in 1999 showed that the archaeal community structure on the roots was similar to that in soil but with acetoclastic methanogens being relatively less common. This observation is in agreement with domination of CH(4) production by H(2)/CO(2)-dependent methanogenesis on roots. Our study provided a link between size, structure and function of the methanogenic community in an Italian rice field.  相似文献   
26.
Pathways to caspase activation   总被引:1,自引:0,他引:1  
Apoptosis or programmed cell death is an active form of cell death which is essential for tissue homeostasis. Many proteins are involved in the molecular signal transduction of apoptosis. The caspase enzymes, a family of specific cysteine proteases, play a central role in cell death machinery. In this review, we mainly discuss the current understanding of several pathways to activate caspases and some key proteins related to these pathways.  相似文献   
27.
Epidemiological studies indicate that intake of statins decrease the risk of developing Alzheimer disease. Cellular and in vivo studies suggested that statins might decrease the generation of the amyloid β-peptide (Aβ) from the β-amyloid precursor protein. Here, we show that statins potently stimulate the degradation of extracellular Aβ by microglia. The statin-dependent clearance of extracellular Aβ is mainly exerted by insulin-degrading enzyme (IDE) that is secreted in a nonconventional pathway in association with exosomes. Stimulated IDE secretion and Aβ degradation were also observed in blood of mice upon peripheral treatment with lovastatin. Importantly, increased IDE secretion upon lovastatin treatment was dependent on protein isoprenylation and up-regulation of exosome secretion by fusion of multivesicular bodies with the plasma membrane. These data demonstrate a novel pathway for the nonconventional secretion of IDE via exosomes. The modulation of this pathway could provide a new strategy to enhance the extracellular clearance of Aβ.  相似文献   
28.
The Wnt/β-catenin signaling cascade activates genes that allow cells to adopt particular identities throughout development. In adult self-renewing tissues like intestine and blood, activation of the Wnt pathway maintains a progenitor phenotype, whereas forced inhibition of this pathway promotes differentiation. In the lung alveolus, type 2 epithelial cells (AT2) have been described as progenitors for the type 1 cell (AT1), but whether AT2 progenitors use the same signaling mechanisms to control differentiation as rapidly renewing tissues is not known. We show that adult AT2 cells do not exhibit constitutive β-catenin signaling in vivo, using the AXIN2+/LacZ reporter mouse, or after fresh isolation of an enriched population of AT2 cells. Rather, this pathway is activated in lungs subjected to bleomycin-induced injury, as well as upon placement of AT2 cells in culture. Forced inhibition of β-catenin/T-cell factor signaling in AT2 cultures leads to increased cell death. Cells that survive show reduced migration after wounding and reduced expression of AT1 cell markers (T1α and RAGE). These results suggest that AT2 cells may function as facultative progenitors, where activation of Wnt/β-catenin signaling during lung injury promotes alveolar epithelial survival, migration, and differentiation toward an AT1-like phenotype.  相似文献   
29.
Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.  相似文献   
30.
Liu H  Yi Q  Liao Y  Feng J  Qiu M  Tang L 《Gene》2012,501(2):153-163
A systems understanding of mechanical regulation is critical for determining how cells proliferate and differentiate. To better understand the biological process in which mechanical signals regulate cells, we globally investigated the gene expression profiling via long serial analysis of gene expression (Long SAGE) in osteoblasts after exposure to mechanical stretching. The analysis showed that the differentially expressed genes were related with many physiological processes, including signal transduction, cell proliferation and apoptosis. Several genes that were seldom or never studied in osteoblasts have been found in this study. We further analyzed the signal pathways and provided gene regulatory networks activated by mechanical signals. Many changed genes in our data were contributed to ECM-integrin-FAK mediated pathway and mainly influenced actin-cytoskeleton dynamic remodeling, cell proliferation and differentiation. We also provided evidence supporting the hypothesis that endoplasmic reticulum and mitochondrion were combined to dedicate to calcium regulation. Taken together, our experiments provided a systemic view on biological processes and mechanotransduction network in osteoblasts, suggesting that mechanical signals regulate osteoblast through a greater diversity of interactions and pathways than previously appreciated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号