首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6971篇
  免费   1619篇
  国内免费   964篇
  9554篇
  2024年   104篇
  2023年   366篇
  2022年   369篇
  2021年   524篇
  2020年   468篇
  2019年   431篇
  2018年   340篇
  2017年   370篇
  2016年   309篇
  2015年   317篇
  2014年   400篇
  2013年   504篇
  2012年   322篇
  2011年   354篇
  2010年   282篇
  2009年   355篇
  2008年   355篇
  2007年   378篇
  2006年   320篇
  2005年   300篇
  2004年   251篇
  2003年   257篇
  2002年   201篇
  2001年   164篇
  2000年   139篇
  1999年   140篇
  1998年   111篇
  1997年   97篇
  1996年   102篇
  1995年   89篇
  1994年   85篇
  1993年   67篇
  1992年   66篇
  1991年   63篇
  1990年   43篇
  1989年   47篇
  1988年   38篇
  1987年   43篇
  1986年   32篇
  1985年   50篇
  1984年   40篇
  1983年   30篇
  1982年   46篇
  1981年   31篇
  1980年   25篇
  1979年   20篇
  1978年   27篇
  1977年   25篇
  1976年   16篇
  1975年   12篇
排序方式: 共有9554条查询结果,搜索用时 9 毫秒
51.
Abstract Three proteins from Halobacterium marismortui , malate dehydrogenase (hMDH), glutamate dehydrogenase (hGDH) and ferredoxin (hFD) were purified and characterized with respect to their molecular masses, amino acid composition and, for hFD only, primary structure. Striking features of halophilic proteins are: the high excess of acidic over basic residues; acidic clusters in the sequence. Low-salt concentration causes inactivation and changes in structural parameters of hMDH and hGDH. Reactivation of hMDH involves long-lived stable intermediates. The salt concentration optimum of enzymic activity is independent of salt nature. The high capacity of halophilic proteins to retain water and salt is due to unique molecular properties, studied by physico-chemical techniques.  相似文献   
52.
The relationship between NADPH-dependent lipid peroxidation and the degradation of cytochrome P-450 has been studied in bovine adrenal cortex mitochondria. Malondialdehyde formation is accompanied by a corresponding decrease in total cytochrome P-450 content. Inhibitors of lipid peroxidation also prevent the loss of cytochrome P-450, further demonstrating a direct relationship between NADPH-dependent lipid peroxidation and degradation of P-450. To differentiate between cytochrome P-450(11)beta and P-450scc, steroid-induced difference spectra were used to evaluate P-450 degradation. These measurements provide the first evidence that both P-450's are degraded during NADPH-dependent lipid peroxidation with P-450(11)beta being much more susceptible to this process.  相似文献   
53.
The interaction between the three Drosophila DNA-dependent RNA polymerases (EC 2.7.7.6) and the DNA template or the RNA product was investigated by photochemical cross-linking and binding studies, using RNA polymerase subunits immobilized on nitro-cellulose filters. It can be shown that the two largest subunits are responsible for the binding of the enzymes to both template and newly-synthesized RNA.  相似文献   
54.
55.
Summary The frog motor endplate in its simplest form consists of an elongated, slender nerve ending embedded in a gutter-like depression of the sarcolemma. This nerve terminal contains the usual synaptic organelles. It is covered by a thin coating of Schwann cell cytoplasm which embraces the terminal with thin finger-like processes from both sides, thereby sub-dividing it into 300–1000 regularly spaced compartments. The individual synaptic compartments correspond to the strings of varicosities or grape-like configurations of motor nerve terminals in endplates of other species and in the cerebral neuropil of vertebrates.Each compartment contains one or more bar-like densities of the presynaptic membrane, active zones, which are associated with the attachment sites between synaptic vesicles and plasmalemma. Active zones have a regular transverse arrangement and occur at specific loci opposite the junctional folds. The attachment sites for synaptic vesicles are at the edges of the bars which are bilaterally delineated by a double row of 10 nm particles attached to the A-face. The structural appearance of vesicle attachment sites in freeze-etch replicas corresponds to that of micropinocytosis. The active zones are often fragmented and the frequency of their association with vesicle attachment sites is highly variable.The junctional folds are characterized by specific sites in which intramembranous particle aggregations occur at relatively high packing density (7500/m2). These sites are located opposite the active zones at the juxtaneural lips, a location where one would expect ACh-sensitive receptors on the postsynaptic membrane.This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 38, Projekt N), The Swiss National Foundation for Scientific Research (Grants Nr. 3 82372 and 3 77472) and the Dr. Eric Slack-Gyr Foundation Zürich.  相似文献   
56.
The properties of an optical microscope are analyzed and analytically evaluated with a simple and effective model in order to understand the true meaning, limitations, and real capabilities of a defocusing technique. Major emphasis is given to the applications related to microscopic objects of biological interest using fluorescence and absorption light microscopy. A procedure for three-dimensional viewing is analyzed and discussed.  相似文献   
57.
The contribution of drug metabolites to cyproheptadine (CPH)-induced alterations in endocrine pancreatic -cells was investigated by examining the inhibitory activity of CPH and its biotransformation products, desmethylcyproheptadine (DMCPH), CPH-epoxide and DMCPH-epoxide, on hormone biosynthesis and secretion in pancreatic islets isolated from 50-day-old rats. Measurement of (pro)insulin (proinsulin and insulin) synthesis using incorporation of 3H-leucine showed that DMCPH-epoxide, DMCPH and CPH-epoxide were 22, 10 and 4 times, respectively, more potent than CPH in inhibiting hormone synthesis. The biosynthesis of (pro)insulin was also inhibited by CPH and DMCPH-epoxide in islets isolated from 21-day-old rat fetuses. The inhibitory action of CPH and its metabolites was apparently specific for (pro)insulin, and the synthesis of other islet proteins was not affected. Other experiments showed the metabolites of CPH were active in inhibiting glucose-stimulated insulin secretion but were less potent than the parent drug in producing this effect. CPH and its structurally related metabolites, therefore, have differential inhibitory activities on insulin synthesis and release. The observation that CPH metabolites have higher potency than CPH to inhibit (pro)insulin synthesis, when considered with published reports on the disposition of the drug in rats, indicate that CPH metabolites, particularly DMCPH-epoxide, are primarily responsible for the insulin depletion observed when the parent compound is given to fetal and adult animals.Abbreviations CPH cyproheptadine - CPH-epoxide cyproheptadine-10-11-epoxide - DMCPH desmethylcyproheptadine - DMCPH-epoxide desmethylcyproheptadine-10,11-epoxide - HPLC high-performance liquid chromatography - KBB Krebs biocarbonate buffer Recipient of a Society of Toxicology Predoctoral Research Fellowship.Present address: Department of Biochemistry, The University of Hong Kong, Hong Kong.  相似文献   
58.
Summary Polypeptides, synthesized from a mixture of amino acid amides by microwave heating during repeated hydration-dehydration cycles, showed hydrolase- and oxidoreductase-like catalytic activities. Poly(GAVDH), polypeptides synthesized from an equimolar mixture (each 0.1 M) of glycinamide,l-alaninamide,l-valinamide,l-aspartic acid -amide, andl-histidinamide, catalyzed the hydrolysis of PNPAc. The hydrolytic rate of PNPAc with poly(GAVDH) was the quadruple of that ofl-histidine alone. Though the kcat values of different resulting polypeptides were 103–106 times less than those of native hydrolases, the Km value of the polypeptides further containing phenylalanine residues was nearly equal to that of the esterase. This result indicates the presence of hydrophobic interaction between a substrate and the polypeptides. Resulting polypeptides also showed catalytic activity for the reduction of ferricyanide ion [Fe(CN)3–] with NADH. The polypeptides seemed to have a strong affinity for adenine nucleotides, because the reaction was inhibited by adenine derivatives such as NAD+ and AppA. A hypothesis for the emergence of primitive protein enzymes is discussed.  相似文献   
59.
Nodules of cowpea plants (Vigna unguiculata (L.) Walp. cv. Vita 3 :Bradyrhizobium CB756) cultured for periods of 23 d with their root systems maintained in atmospheres containing a range of partial pressures of O2 (pO2; 1–80%, v/v, in N2) formed and exported ureides (allantoin and allantoic acid) as the major products of fixation at all pO2 tested. In sub-ambient pO2 (1 and 2.5%) nodules contained specific activities of uricase (urate: O2 oxidoreductase; EC 1.7.3.3) and allantoinase (allantoin hydrolyase; EC 3.5.2.5) as much as sevenfold higher than in those from air. On a cell basis, uninfected cells in nodules from 1% O2 contained around five times the level of uricase. Except for NAD: glutamate synthase (EC 1.4.1.14), which was reduced in sub-ambient O2, the activities of other enzymes of ureide synthesis were relatively unaffected by pO2. Short-term effects of pO2 on assimilation of fixed nitrogen were measured in nodules of air-grown plants exposed to subambient pO2 (1, 2.5 or 5%, v/v in N2) and15N2. Despite a fall in total15N2 fixation, ureide synthesis and export was maintained at a high level except in 1% O2 where formation was halved. The data indicate that in addition to the structural and diffusional adaptations of cowpea nodules which allow the balance between O2 supply and demand to be maintained over a wide range of pO2, nodules also show evidence of biochemical adaptations which maintain and enhance normal pathways for the assimilation of fixed nitrogen. This work was supported by a grant from the Australian Research Council (to C.A.A.) and an Australian Development Assistance Bureau postgraduate fellowship (to F.D.D.).  相似文献   
60.
In the last few years our knowledge of the structure and function of Photosystem II in oxygen-evolving organisms has increased significantly. The biochemical isolation and characterization of essential protein components and the comparative analysis from purple photosynthetic bacteria (Deisenhofer, Epp, Miki, Huber and Michel (1984) J Mol Biol 180: 385–398) have led to a more concise picture of Photosystem II organization. Thus, it is now generally accepted that the so-called D1 and D2 intrinsic proteins bind the primary reactants and the reducing-side components. Simultaneously, the nature and reaction kinetics of the major electron transfer components have been further clarified. For example, the radicals giving rise to the different forms of EPR Signal II have recently been assigned to oxidized tyrosine residues on the D1 and D2 proteins, while the so-called Q400 component has been assigned to the ferric form of the acceptor-side iron. The primary charge-separation has been meaured to take place in about 3 ps. However, despite all recent major efforts, the location of the manganese ions and the water-oxidation mechanism still remain largely unknown. Other topics which lately have received much attention include the organization of Photosystem II in the thylakoid membrane and the role of lipids and ionic cofactors like bicarbonate, calcium and chloride. This article attempts to give an overall update in this rapidly expanding field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号