首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10051篇
  免费   2044篇
  国内免费   1452篇
  13547篇
  2024年   70篇
  2023年   483篇
  2022年   315篇
  2021年   420篇
  2020年   774篇
  2019年   742篇
  2018年   690篇
  2017年   743篇
  2016年   702篇
  2015年   697篇
  2014年   711篇
  2013年   752篇
  2012年   539篇
  2011年   501篇
  2010年   486篇
  2009年   612篇
  2008年   589篇
  2007年   523篇
  2006年   443篇
  2005年   413篇
  2004年   348篇
  2003年   247篇
  2002年   216篇
  2001年   186篇
  2000年   204篇
  1999年   137篇
  1998年   142篇
  1997年   90篇
  1996年   103篇
  1995年   114篇
  1994年   83篇
  1993年   58篇
  1992年   44篇
  1991年   37篇
  1990年   31篇
  1989年   19篇
  1988年   26篇
  1987年   22篇
  1986年   29篇
  1985年   23篇
  1984年   21篇
  1983年   22篇
  1982年   35篇
  1981年   17篇
  1980年   28篇
  1979年   27篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1958年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
《Plant Ecology & Diversity》2013,6(5-6):453-468
Background: In tundra ecosystems, the adjustment of phenological events, such as bud burst, to snowmelt timing is crucial to the climatic adaptation of plants. Natural small-scale variations in microclimate potentially enable plant populations to persist in a changing climate.

Aims: To assess how plant phenology responds to natural differences in snowmelt timing.

Methods: We observed the timing of eight vegetative and reproductive phenophases in seven dwarf-shrub species in relation to differences in snowmelt timing on a small spatial scale in an alpine environment in subarctic Finland.

Results: Some species and phenophases showed accelerated development with later snowmelt, thus providing full or partial compensation for the shorter snow-free period. Full compensation resulted in synchronous occurrence of phenophases across the snowmelt gradient. In other species, there was no acceleration of development. The timing of phenophases varied between two consecutive years and two opposing mountain slope aspects.

Conclusions: The results have shown three distinct patterns in the timing of phenophases in relation to snowmelt and suggest alternative strategies for adaptation to snowmelt timing. These strategies potentially apply to other species and tundra ecosystems and provide a framework, enabling one to compare and generalise phenological responses to snowmelt timing under different future climate scenarios.  相似文献   
992.
为深入理解人类活动对陆地生态系统的影响,采用CASA(Carnegie-Ames-Stanford Approach)模型估算广东省2000、2005和2010年实际植被净初级生产力(Net primary productivity,NPP),并基于情景模拟法估算气候和土地覆盖类型稳定条件下的植被NPP,对气候波动和土地覆盖变化在植被NPP变化中的相对贡献进行了研究。结果表明:太阳辐射对植被NPP具有显著的正向控制作用,气温与植被NPP表现为显著负相关,降水不是该区域植被生长的限制性因子;各气候因子与植被NPP的相关性具有季节和区域差异性。在气候不变条件下,土地覆盖变化整体上增加了NPP,对NPP变化的相对贡献与城市扩张格局相类似,不同生态区存在差异性,以珠三角区的贡献最大。总之,气候波动对NPP变化的相对贡献较为复杂,取决于气候因子的波动特征以及与NPP的相关性;其它因子(城市热岛、农耕活动和园林管理等)对NPP变化的相对贡献存在很多不确定性,整体上增加了NPP。  相似文献   
993.
Intensive dairy farming systems are a large source of emission of the greenhouse gas nitrous oxide (N2O), because of high nitrogen (N) application rates to grasslands and silage maize fields. The objective of this study was to compare measured N2O emissions from two different soils to default N2O emission factors, and to look at alternative emission factors based on (i) the N uptake in the crop and (ii) the N surplus of the system, i.e., N applied minus N uptake by the crop. Twelve N fertilization regimes were implemented on a sandy soil (typic endoaquoll) and a clay soil (typic endoaquept) in the Netherlands, and N2O emissions were measured throughout the growing season. Highest cumulative fluxes of 1.92 and 6.81 kg N2O-N ha–1 for the sandy soil and clay soil were measured at the highest slurry application rate of 250 kg N ha–1. Background emissions from unfertilized soils were 0.14 and 1.52 kg N2O-N ha–1 for the sandy soil and the clay soil, respectively. Emission factors for the sandy soil averaged 0.08, 0.51 and 0.26% of the N applied via fertilizer, slurry, and combinations of both. For the clay soil, these numbers were 1.18, 1.21 and 1.69%, respectively. Surplus N was linearly related to N2O emission for both the sandy soil (R2=0.60) and the clay soil (R2=0.40), indicating a possible alternative emission factor. We concluded that, in our study, N2O emission was not linearly related to N application rates, and varied with type and application rate of fertilizer. Finally, the relatively high emission from the clay soil indicates that background emissions might have to be taken into account in N2O budgets.  相似文献   
994.
Yield development of agricultural crops over time is not merely the result of genetic and agronomic factors, but also the outcome of a complex interaction between climatic and site‐specific soil conditions. However, the influence of past climatic changes on yield trends remains unclear, particularly under consideration of different soil conditions. In this study, we determine the effects of single agrometeorological factors on the evolution of German winter wheat yields between 1958 and 2015 from 298 published nitrogen (N)‐fertilization experiments. For this purpose, we separate climatic from genetic and agronomic yield effects using linear mixed effect models and estimate the climatic influence based on a coefficient of determination for these models. We found earlier occurrence of wheat growth stages, and shortened development phases except for the phase of stem elongation. Agrometeorological factors are defined as climate covariates related to the growth of winter wheat. Our results indicate a general and strong effect of agroclimatic changes on yield development, in particular due to increasing mean temperatures and heat stress events during the grain‐filling period. Except for heat stress days with more than 31°C, yields at sites with higher yield potential were less prone to adverse weather effects than at sites with lower yield potential. Our data furthermore reveal that a potential yield levelling, as found for many West‐European countries, predominantly occurred at sites with relatively low yield potential and about one decade earlier (mid‐1980s) compared to averaged yield data for the whole of Germany. Interestingly, effects related to high precipitation events were less relevant than temperature‐related effects and became relevant particularly during the vegetative growth phase. Overall, this study emphasizes the sensitivity of yield productivity to past climatic conditions, under consideration of regional differences, and underlines the necessity of finding adaptation strategies for food production under ongoing and expected climate change.  相似文献   
995.
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory‐based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.  相似文献   
996.
帽儿山不同年龄森林土壤呼吸速率的影响因子   总被引:2,自引:0,他引:2  
王家骏  王传宽  韩轶 《生态学报》2018,38(4):1194-1202
为探明东北温带森林恢复过程中土壤呼吸(R_S)的变化趋势及其影响因子,在帽儿山选取皆伐后天然更新恢复的4个年龄(1a、10a、25a和56a)林分进行了1年的野外原位测定。结果表明:(1)皆伐后天然更新恢复1年、10年、25年和56年林分的年R_S通量差异显著(P0.05),分别为686.5、639.7、733.3、762.3g C m~(-2)a~(-1);其中生长季(5月─10月)和非生长季的R_S通量也存在显著差异,均呈现出随林龄增加先减后增的趋势。全年、生长季和非生长季R_S随林龄变化的变异系数分别为7.6%、6.3%和21.1%,表明非生长季R_S通量的变异性加大了全年R_S通量的差异。(2)4个年龄林分的Rs季节变化趋势相似,且其主控因子均随季节而变:6月─8月Rs与土壤含水率呈二次函数关系(R~2波动在56%─79%之间),其余时段则与土壤温度呈指数函数关系(R~2波动在85%─93%之间)。(3)不同年龄林分生长季R_S与0─20cm土层有机碳(SOC)密度呈正相关关系(R~2=0.434,P0.05),而非生长季R_S与同期土壤5cm温度呈正相关关系(R~2=0.959,P0.01)。本研究区森林皆伐导致R_S降低,随皆伐后森林恢复R_S不断增加,其主导驱动因子是SOC密度的增加和非生长季土壤温度的变化。  相似文献   
997.
Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long‐term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite‐measured normalized difference vegetation index and reanalysis temperature during 1982–2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982–1999) but advanced by only 0.2 days in the later period (2000–2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January–April) before SOS compared with the magnitude of warming in the preseason (June–September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer‐lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf‐out.  相似文献   
998.
Tropical species are vulnerable to global warming because they live at, or near to, their upper thermal threshold limits. Therefore, the predicted increase in the frequency of warming events in the tropics is expected to be critical for the survival of local species. This study explored the major environmental variables which were thought to be correlated with body temperatures (BTs) of the tropical snail Littoraria scabra at the niche level. A correlation between BT and substrate temperature (ST) was detected from field observations which suggests a possible causal relationship between both substrate and BTs. In contrast, there was no correlation between BT and air temperature. Field observations suggest that 33.4 °C may be L. scabra upper limit of substrate surface temperature, although further experiments are needed to assess if the upper limit of physiological tolerance is actually different. As L. scabra individuals were free to choose their substrata, the observed distribution pattern at the niche level is related to L. scabra's behavior. Additionally, substrate surface temperatures were very heterogeneous at centimeter scale (i.e. from 22.5 to 53.1 °C) and L. scabra was shown to select specific STs (i.e. between 22.5 and 33.4 °C) rather than microhabitat type. Therefore, L. scabra did not seem to behaviorally thermoregulate through microhabitat selection nor aggregation. In contrast, behavioral experiments showed that L. scabra has the ability to actively select a thermally favorable site over short temporal scale (i.e. individual average speed of 1.26 cm min?1) following exposure to high temperatures above 33.4 °C. Hence, this study supports the crucial need to integrate intertidal invertebrate behavioral responses to thermal constraints in climate change studies.  相似文献   
999.
Dryland ecosystems may be especially vulnerable to expected 21st century increases in temperature and aridity because they are tightly controlled by moisture availability. However, climate impact assessments in drylands are difficult because ecological dynamics are dictated by drought conditions that are difficult to define and complex to estimate from climate conditions alone. In addition, precipitation projections vary substantially among climate models, enhancing variation in overall trajectories for aridity. Here, we constrain this uncertainty by utilizing an ecosystem water balance model to quantify drought conditions with recognized ecological importance, and by identifying changes in ecological drought conditions that are robust among climate models, defined here as when >90% of models agree in the direction of change. Despite limited evidence for robust changes in precipitation, changes in ecological drought are robust over large portions of drylands in the United States and Canada. Our results suggest strong regional differences in long‐term drought trajectories, epitomized by chronic drought increases in southern areas, notably the Upper Gila Mountains and South‐Central Semi‐arid Prairies, and decreases in the north, particularly portions of the Temperate and West‐Central Semi‐arid Prairies. However, we also found that exposure to hot‐dry stress is increasing faster than mean annual temperature over most of these drylands, and those increases are greatest in northern areas. Robust shifts in seasonal drought are most apparent during the cool season; when soil water availability is projected to increase in northern regions and decrease in southern regions. The implications of these robust drought trajectories for ecosystems will vary geographically, and these results provide useful insights about the impact of climate change on these dryland ecosystems. More broadly, this approach of identifying robust changes in ecological drought may be useful for other assessments of climate impacts in drylands and provide a more rigorous foundation for making long‐term strategic resource management decisions.  相似文献   
1000.
降水变化对高寒草甸生态系统产生了显著影响,植物叶片性状特别是叶脉特征对降水变化非常敏感,然而高寒植物叶片性状特征如何响应降水变化还知之较少。采用集雨棚模拟增减50%降水的条件,以高寒草甸8种主要植物叶片为研究对象,研究了降水变化对叶片的叶脉率、叶脉密度、叶片大小、比叶质量、叶片总有机碳含量、叶片全氮含量、叶片碳同位素相对含量和碳氮比等叶片性状的影响。发现增水显著增加了植物的叶片大小、稳定碳同位素千分值、总有机碳含量、全氮含量,但显著降低了叶脉密度;而减水显著降低了叶片大小、稳定碳同位素千分值。植物叶片性状各指标对降水变化的响应存在协同变化和相互制约。不同水分生态类型的植物对降水变化的响应存在差异,中生植物通过增加叶片大小和减少叶脉密度积极应对降水的增加,矮生嵩草的叶片大小分别增加了200.3%,叶脉密度减小了17.5%,而旱中生植物通过减少叶片大小和增加叶脉密度应对降水的减少,垂穗披碱草和异针茅的叶片大小分别减少54.9%和30.7%,其叶脉密度分别增加25%和22.4%。羽状叶脉植物增加叶脉密度和稳定碳同位素千分值以适应增水条件,花苜蓿、异叶米口袋的叶脉密度的增加了7.8%和4.0%,稳定碳同位素千分值增加2.5%和3.3%,但增水条件下平行叶脉植物的叶脉密度不变或降低和稳定碳同位素千分值保持不变;减水增加了平行叶脉植物叶脉密度并减低了稳定碳同位素千分值,异针茅的叶脉密度增加了22.4%,稳定碳同位素千分值减小2.9%,而对羽状叶脉植物的叶脉密度和稳定碳同位素千分值减少或不变。植物叶片性状对增水的敏感性显著大于对减水的敏感性,增水的效应约为减水的2倍;叶片大小的敏感性显著大于其它叶片性状,约为其它叶片性状的10倍。因此,植物在应对短期降水变化时,植物形态可塑性的作用凸显,放大或缩小叶片大小是植物应对降水变化的最有效的途径,但是不同水分生态类型和叶脉类型植物可塑性的方向存在显著差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号