首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   6篇
  国内免费   16篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   2篇
  2017年   11篇
  2016年   15篇
  2015年   7篇
  2014年   16篇
  2013年   19篇
  2012年   16篇
  2011年   22篇
  2010年   14篇
  2009年   29篇
  2008年   30篇
  2007年   26篇
  2006年   20篇
  2005年   15篇
  2004年   9篇
  2003年   15篇
  2002年   9篇
  2001年   4篇
  2000年   10篇
  1999年   11篇
  1998年   12篇
  1997年   6篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   6篇
  1978年   1篇
  1977年   3篇
  1971年   1篇
  1970年   1篇
排序方式: 共有416条查询结果,搜索用时 984 毫秒
51.
It is well known that pulp density and particle size determine the available surface area concentration and have an influence in the overall rate of bioleaching of minerals. As metal solubilization takes place through the surface area of the particles, it can be expected that different combinations of pulp densities and particle sizes giving the same surface area concentration would determine the same leaching rate. The objective of this work was to test this hypothesis on the effect of surface area concentration, pulp density and particle size of the biooxidation of a pyritic gold concentrate by the thermophilic Archaeon Sulfolobus metallicus in shake flasks. The gold concentrate was used at 2.5%, 5%, 10%, and 15% w/v pulp density and at four size fractions: 150–106, 106–75, 75–38 and –38 μm. Temperature was 68°C and the initial pH was 2.0. Results showed that the volumetric productivities of iron and sulfate depend not only on the surface area concentration but also on pulp density and particle size considered separately. These two variables not only determine surface area but also exert additional effects on the process, so the hypothesis was not confirmed. Maximum attained iron productivity was 1.042 g/l day with the 75–38 μm fraction at 5% pulp density. Maximum sulfate productivity was 4.279 g/l day with the 75–38 μm fraction at 10% pulp density.  相似文献   
52.
The digestion of plant material in mammalian herbivores basically depends on the chemical and structural composition of the diet, the mean particle size to which the forage is processed, and the ingesta retention time. These different factors can be influenced by the animal, and they can presumably compensate for each other. The pygmy hippopotamus, a non-ruminating foregut fermenter, has longer mean retention times than ruminants; however hippos do not achieve higher (fibre) digestibilities on comparable diets, which could be due to ineffective mastication. We performed feeding trials with six pygmy hippos (Hexaprotodon liberiensis) and six banteng cattle (Bos javanicus) on a grass diet. As predicted, both species achieved similar dry matter, organic matter, crude protein and gross energy digestibilities. However, neutral and acid detergent fibre digestibility was lower in pygmy hippos. Apparently, in these species, fibre digestibility was more influenced by particle size, which was larger in pygmy hippos compared to banteng, than by retention time. In spite of their higher relative food intake, the banteng in this study did not have greater relative gut fills than the hippos. Ruminants traditionally appear intake-limited when compared to equids, because feed particles above a certain size cannot leave the rumen. But when compared to nonruminating foregut fermenters, rumination seems to free foregut fermenters from an intrinsic food intake limitation. The higher energy intakes and metabolic rates in wild cattle compared to hippos could have life-history consequences, such as a higher relative reproductive rate.  相似文献   
53.
The Local Exchange Model (LEM) is a stochastic diffusion model of particle transport in turbulent flowing water. It was developed mainly for application to particles of near-neutral buoyancy that are strongly influenced by turbulent eddies. Turbulence can rapidly transfer such particles to the bed, where settlement can then occur by, for example, sticking to biofilms (e.g., fine particulate organic matter, or FPOM) or attaching to the substrate behaviorally (e.g., benthic invertebrates). Previous papers on the LEM have addressed the problems of how long (time) and far (distance) a suspended particle will be transported before hitting the bed for the first time. These are the hitting-time and hitting-distance problems, respectively. Hitting distances predicted by the LEM for FPOM in natural streams tend to be much shorter than the distances at which most particles actually settle, suggesting that particles usually do not settle the first time they hit the bed. The present paper extends the LEM so it can address probabilistic settling, where a particle encountering the bed can either remain there for a positive length of time (i.e., settle) or immediately reflect back into the water column, each with positive probability. Previous results for the LEM are generalized by deducing a single set of equations governing the probability distribution and moments of a broad class of quantities that accumulate during particle trajectories terminated by hitting or settling on the bed (e.g., transport time, transport distance, cumulative energy expenditure during transport). Key properties of the settling-time and settling-distance distributions are studied numerically and compared with the observed FPOM settling-distance distribution for a natural stream. Some remaining limitations of the LEM and possible means of overcoming them are discussed.  相似文献   
54.
At the Italian National Centre for Oncologic Hadrontherapy (CNAO) patients with upper-abdominal tumours are being treated with carbon ion therapy, adopting the respiratory gating technique in combination with layered rescanning and abdominal compression to mitigate organ motion. Since online imaging of the irradiated volume is not feasible, this study proposes a modelling approach for the estimation of residual motion of the target within the gating window. The model extracts a priori respiratory motion information from the planning 4DCT using deformable image registration (DIR), then combines such information with the external surrogate signal recorded during dose delivery. This provides estimation of a CT volume corresponding to any given respiratory phase measured during treatment. The method was applied for the retrospective estimation of tumour residual motion during irradiation, considering 16 patients treated at CNAO with the respiratory gating protocol. The estimated tumour displacement, calculated with respect to the reference end-exhale position, was always limited (average displacement is 0.32 ± 0.65 mm over all patients) and below the maximum motion defined in the treatment plan. This supports the hypothesis of target position reproducibility, which is the crucial assumption in the gating approach. We also demonstrated the use of the model as a simulation tool to establish a patient-specific relationship between residual motion and the width of the gating window. In conclusion, the implemented method yields an estimation of the repeatability of the internal anatomy configuration during gated treatments, which can be used for further studies concerning the dosimetric impact of the estimated residual organ motion.  相似文献   
55.
56.
In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS2Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS2O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS2O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm’s performance. Then PS2O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.  相似文献   
57.
Intracellular vesicles, comprised of protein clusters, were individually tracked inside human brain cancer cells and characterized to simultaneously determine the average vesicle size and effective cytoplasmic viscosity. The cells were transfected with a TGF‐β superfamily gene, non‐steroidal anti‐inflammatory drug‐Activated Gene‐1 (NAG‐1) tagged with green fluorescent proteins (GFPs). Using total internal reflection fluorescent microscopy (TIRFM) the individual movements of the vesicles were categorized into either Brownian, caged, or directional type motion. In the near‐field region confined by the evanescent wave field of TIRFM, the hindrance of these vesicles was created by interactions with the glass coverslip and/or sub‐cellular structures. Measured particle motions were compared with theoretical predictions of hindered motion to estimate the unknown size and viscosity parameters using a nonlinear regression technique. For the tested human brain cancer cells, the average vesicle size and effective intracellular fluid viscosity were calculated to be 496 nm and 0.068 Pa s, respectively. This finding suggests that most of the hindrance experienced by vesicles can be due to non‐hydrodynamic interactions with microtubules and other intracellular structures. It should be also noted that this method provides a way to examine changes in vesicle size due to outside stimulus such as drug interaction, cytotoxicity, etc., unlike standard measurement techniques which require fixing the cells themselves. Biotechnol. Bioeng. 2011;108: 2504–2508. © 2011 Wiley Periodicals, Inc.  相似文献   
58.
59.
Understanding network topology through embracing the global dynamical regulation of genes in an active state space rather than traditional one-gene–one trait approach facilitates the rational drug development process. Schistosomiasis, a neglected tropical disease, has glycerophospholipids as abundant molecules present on its surface. Lack of effective clinical solutions to treat pathogens encourages us to carry out systems-level studies that could contribute to the development of an effective therapy. Development of a strategy for identifying drug targets by combined genome-scale metabolic network and essentiality analyses through in silico approaches provides tantalizing opportunity to investigate the role of protein/substrate metabolism. A genome-scale metabolic network model reconstruction represents choline–phosphate cytidyltransferase as the rate limiting enzyme and regulates the rate of phosphatidylcholine (PC) biosynthesis. The uptake of choline was regulated by choline concentration, promoting the regulation of phosphocholine synthesis. In Schistosoma, the change in developmental stage could result from the availability of choline, hampering its developmental cycle. There are no structural reports for this protein. In order to inhibit the activity of choline–phosphate cytidyltransferase (CCT), it was modeled by homology modeling using 1COZ as the template from Bacillus subtilis. The transition-state stabilization and catalytic residues were mapped as ‘HXGH’ and ‘RTEGISTT’ motif. CCT catalyzes the formation of CDP-choline from phosphocholine in which nucleotidyltransferase adds CTP to phosphocholine. The presence of phosphocholine permits the parasite to survive in an immunologically hostile environment. This feature endeavors development of an inhibitor specific for cytidyltransferase in Schistosoma. Flavonolignans were used to inhibit this activity in which hydnowightin showed the highest affinity as compared to miltefosine.  相似文献   
60.
Random spherically constrained (RSC) single particle reconstruction is a method to obtain structures of membrane proteins embedded in lipid vesicles (liposomes). As in all single-particle cryo-EM methods, structure determination is greatly aided by reliable detection of protein “particles” in micrographs. After fitting and subtraction of the membrane density from a micrograph, normalized cross-correlation (NCC) and estimates of the particle signal amplitude are used to detect particles, using as references the projections of a 3D model. At each pixel position, the NCC is computed with only those references that are allowed by the geometric constraint of the particle’s embedding in the spherical vesicle membrane. We describe an efficient algorithm for computing this position-dependent correlation, and demonstrate its application to selection of membrane-protein particles, GluA2 glutamate receptors, which present very different views from different projection directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号