首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12421篇
  免费   653篇
  国内免费   440篇
  2023年   129篇
  2022年   176篇
  2021年   271篇
  2020年   247篇
  2019年   269篇
  2018年   345篇
  2017年   243篇
  2016年   221篇
  2015年   312篇
  2014年   489篇
  2013年   741篇
  2012年   389篇
  2011年   435篇
  2010年   393篇
  2009年   510篇
  2008年   638篇
  2007年   595篇
  2006年   637篇
  2005年   537篇
  2004年   512篇
  2003年   476篇
  2002年   457篇
  2001年   316篇
  2000年   295篇
  1999年   298篇
  1998年   289篇
  1997年   256篇
  1996年   246篇
  1995年   251篇
  1994年   238篇
  1993年   254篇
  1992年   198篇
  1991年   187篇
  1990年   186篇
  1989年   150篇
  1988年   138篇
  1987年   118篇
  1986年   94篇
  1985年   107篇
  1984年   162篇
  1983年   118篇
  1982年   125篇
  1981年   112篇
  1980年   85篇
  1979年   70篇
  1978年   64篇
  1977年   36篇
  1976年   34篇
  1974年   21篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Two folate binding proteins are present in human milk; one of 27 kDa is a cleavage product of the other one (100 kDa) which possesses a hydrophobic membrane anchor. A drastic change of radioligand binding characteristics and appearance of aggregated weak-radioligand affinity forms on gel filtration occurred at low concentrations of both proteins in the absence of Triton X-100 or other amphiphatic substances, e.g. cetyltrimethylammonium and phospholipids. These findings are consistent with a model predicting association between unliganded and liganded monomers resulting in weak-ligand affinity dimers. Amphiphatic substances form micelles and lipid bilayers which could separate hydrophobic unliganded monomers from hydrophilic liganded monomers (monomers become hydrophilic in the liganded state) thereby preventing association between these monomeric forms prevailing at low concentrations of the protein. Bio-Gel P-300 chromatography of the 27 kDa protein revealed a pronounced polymerization tendency, which diminished with decreasing protein concentrations, however, not in the presence of cetyltrimethylammonium. The data could have some bearings on observations indicating that naturally occurring amphiphatic substances, cholesterol and phospholipids, are necessary for the important clustering of membrane folate receptors.  相似文献   
992.
Bacillus thuringiensis, the entomopathogenic bacteria from the Bacillus cereus group, harbors numerous extrachromosomal molecules whose sizes vary from 2 to more than 200kb. Apart from the genes coding for the biopesticide delta-endotoxins located on large plasmids, little information has been obtained on these plasmids and their contribution to the biology of their host. In this paper, we embarked on a detailed comparison of six small rolling-circle replicating (RCR) plasmids originating from two major B. thuringiensis strains. The complete nucleotide sequences of plasmid pGI1, pGI2, pGI3, pTX14-1, pTX14-2, and pTX14-3 have been obtained and compared. Replication functions, comprising, for each plasmid, the gene encoding the Rep-protein, double-strand origin of replication (dso), single-strand origin of replication (sso), have been identified and analyzed. Two new families, or homology groups, of RCR plasmids originated from the studies of these plasmids (Group VI based on pGI3 and Group VII based on pTX14-3). On five of the six plasmids, loci involved in conjugative mobilization (Mob-genes and origin of transfer (oriT)) were identified. Plasmids pTX14-1, pTX14-2, and pTX14-3 each harbor an ORF encoding a polypeptide containing a central domain with repetitive elements similar to eukaryotic collagen (Gly-X-Y triplets). These genes were termed bcol for Bacillus-collagen-like genes.  相似文献   
993.
A proteomics approach was evaluated for analysis of photosyntheis-related proteins that are characteristic of chromatophores, particles derived from purple phototrophic bacterial intracytoplasmic membranes. Proteins of purified chromatophores from Rhodopseudomonas palustris were solubilized and digested with trypsin, to create a collection of peptides that were fractionated by liquid chromatography. Peptide sequences were determined and assigned to specific proteins by analysis of tandem mass spectra of peptides, and comparison to a library derived from the recently determined R. palustris genome sequence. A total of 300 proteins were detected with a probability value >/=0.9, and the number of proteins detected increased to 345 when the minimum probability value was reduced to 0.5. Membrane-integral proteins of the reaction center, cytochrome b/c (1), light-harvesting and ATPase complexes were used as controls to assess how well this approach performs with hydrophobic proteins. New genes were identified, and tentatively designated as encoding photosynthesis-related proteins. We conclude that this approach is a powerful method to evaluate the possible existence of new photosynthesis-related proteins (and genes), although alternative methods are needed to evaluate the exact functions of newly discovered genes.  相似文献   
994.
Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems. Common features were identified among the known and newly identified putative envelope inner membrane transporters and were used to mine the complete Arabidopsis genome to establish a virtual plastid envelope integral protein database. Arabidopsis envelope membrane proteins were extracted using different methods, that is, chloroform/methanol extraction, alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to the less hydrophobic ones. Mass spectrometry analyses lead to the identification of more than 100 proteins. More than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are (a) involved in ion and metabolite transport, (b) components of the protein import machinery and (c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism or in responses to oxidative stress, were associated with envelope membranes. Almost one third of the newly identified proteins have no known function. The present stage of the work demonstrates that a combination of different proteomics approaches together with bioinformatics and the use of different biological models indeed provide a better understanding of chloroplast envelope biochemical machinery at the molecular level.  相似文献   
995.
996.
997.
Regulation of apoptosis by Bcl-2 family proteins   总被引:9,自引:0,他引:9  
For multicellular organisms, the rigorous control of programmed cell death is as important as that of cell proliferation. The mechanisms involved in the regulation of cell death are not yet understood, but a key component is the family of caspases which are activated in a cascade and are responsible for the apoptotic-specific changes and disassembly of the cell. Although the caspases represent a central point in apoptosis, their activation is regulated by a variety of other factors. Among these, Bcl-2 family plays a pivotal role in caspases activation, by this deciding whether a cell will live or die. Bcl-2 family members are known to focus much of their response to the mitochondria level, upstream the irreversible cellular damage, but their functions are not yet well defined. This review summarizes the recent data regarding the Bcl-2 proteins and the ways they regulate the apoptosis.  相似文献   
998.
Kumar Y  Tatu U 《Proteomics》2003,3(4):513-526
Multiple stress proteins are recruited in response to stress in living cells. There are limited reports in the literature analyzing multiple stress protein shifts and their functional consequences on stress response. Using two-dimensional electrophoresis we have analyzed shifts in stress protein profiles in response to energy deprivation as a model of ischemic injury to kidneys. A group of chaperones and stress-induced mitogen activated protein (MAP) kinases were analyzed. In addition to examining stress protein induction and phosphorylation we have also examined the mechanism of cytoprotection by heat shock protein 70 (Hsp70). Our results show that, of the different stress proteins examined, only binding protein (BiP) and Hsp70 were significantly induced upon energy deprivation. Other stress proteins, including Hsp27, calnexin, Hsp90 and ERp57 showed alterations in their phosphorylation profiles. Three different MAP kinases, namely p38, extracellular signal regulated kisase and c-jun N-terminal kinase (JNK) were activated in response to energy deprivation. While JNK activation was linked to apoptosis, activated-p38 was involved in phosphorylation of Hsp27. Study of inhibitors of Hsp70 induction or pre-induction of Hsp70 indicated that induced Hsp70 was involved in the suppression of JNK activation thereby inhibiting apoptotic cell death. Our results provide important insights into the flux in stress protein profiles in response to simulated ischemia and highlight the antiapoptotic, cytoprotective mechanism of Hsp70 action.  相似文献   
999.
A fast and simple method for the extraction and purification of Kunitz trypsin inhibitor from soybean seeds is described. The first step consisted in the heat treatment of whole soybean seeds in water at 60 degrees C for 90 min. It was found that 8.4% of total trypsin inhibitory activity of the seeds was secreted during heat treatment. The aqueous medium was loaded onto an affinity chromatography column with immobilized trypsin. The retained fraction, eluted with 0.01 N HCl, contained the purified Kunitz trypsin inhibitor, which was subsequently stabilized by freeze-drying without loss of activity. From 1g soybean seeds, 0.7 mg inhibitor with a specific trypsin inhibitory (TI) activity of 11,430 TIU/mg was obtained. The yield was greater than that obtained with established procedures. Due to the ease of the procedure proposed, the method is readily scalable to pilot plant or industrial preparations.  相似文献   
1000.
Two protein families that are critical for vesicle transport are the Syntaxin and Munc18/Sec1 families of proteins. These two molecules form a high affinity complex and play an essential role in vesicle docking and fusion. Munc18c was expressed as an N-terminally His-tagged fusion protein from recombinant baculovirus in Sf9 insect cells. His-tagged Munc18c was purified to homogeneity using both cobalt-chelating affinity chromatography and gel filtration chromatography. With this simple two-step protocol, 3.5 mg of purified Munc18c was obtained from a 1L culture. Further, the N-terminal His-tag could be removed by thrombin cleavage while the tagged protein was bound to metal affinity resin. Recombinant Munc18c produced in this way is functional, in that it forms a stable complex with the SNARE interacting partner, syntaxin4. Thus we have developed a method for producing and purifying large amounts of functional Munc18c--both tagged and detagged--from a baculovirus expression system. We have also developed a method to purify the Munc18c:syntaxin4 complex. These methods will be employed for future functional and structural studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号