首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4107篇
  免费   143篇
  国内免费   76篇
  2024年   9篇
  2023年   64篇
  2022年   101篇
  2021年   114篇
  2020年   154篇
  2019年   280篇
  2018年   228篇
  2017年   192篇
  2016年   157篇
  2015年   75篇
  2014年   232篇
  2013年   433篇
  2012年   98篇
  2011年   204篇
  2010年   107篇
  2009年   117篇
  2008年   144篇
  2007年   167篇
  2006年   122篇
  2005年   138篇
  2004年   112篇
  2003年   104篇
  2002年   87篇
  2001年   64篇
  2000年   46篇
  1999年   56篇
  1998年   66篇
  1997年   54篇
  1996年   42篇
  1995年   60篇
  1994年   36篇
  1993年   46篇
  1992年   45篇
  1991年   27篇
  1990年   23篇
  1989年   28篇
  1988年   23篇
  1987年   19篇
  1986年   28篇
  1985年   29篇
  1984年   39篇
  1983年   17篇
  1982年   23篇
  1981年   23篇
  1980年   35篇
  1979年   13篇
  1978年   7篇
  1977年   7篇
  1974年   6篇
  1973年   13篇
排序方式: 共有4326条查询结果,搜索用时 15 毫秒
941.
The phosphorylation of rat cardiac microsomal proteins was investigated with special attention to the effects of okadaic acid (an inhibitor of protein phosphatases), inhibitor 2 of protein phosphatase 1 and inhibitor of cyclic AMP-dependent protein kinase (protein kinase A). The results showed that okadaic acid (5 µM) modestly but reproducibly augmented the protein kinase A-catalyzed phospholamban (PLN) phosphorylation, although exerted little effect on the calcium/calmodulin kinase-catalyzed PLN phosphorylation. Microsomes contained three other substrates (Mr 23, 19 and 17 kDa) that were phosphorylated by protein kinase A but not by calcium/calmodulin kinase. The protein kinase A-catalyzed phosphorylation of these three substrates was markedly (2-3 fold) increased by 5 µM okadaic acid. Calmodulin was found to antagonize the action of okadaic acid on such phosphorylation. Protein kinase A inhibitor was found to decrease the protein kinase A-catalyzed phosphorylation of microsomal polyp eptides. Unexpectedly, inhibitor 2 was also found to markedly decrease protein kinase A-catalyzed phosphorylation of phospholamban as well these other microsomal substrates. These results are consistent with the views that protein phosphatase 1 is capable of dephosphorylating membrane-associated phospholamban when it is phosphorylated by protein kinase A, but not by calcium/calmodulin kinase, and that under certain conditions, calcium/calmodulin-stimulated protein phosphatase (protein phosphatase 2B) is also able to dephosphorylate PLN phosphorylated by protein kinase A. Additionally, the observations show that protein phosphatase 1 is extremely active against the three protein kinase A substrates (Mr 23, 19 and 17 kDa) that were present in the isolated microsomes and whose state of phosphorylation was particularly affected in the presence of dimethylsulfoxide. Protein phosphatase 2B is also capable of dephosphorylating these three substrates. (Mol Cell Biochem 175: 109–115, 1997  相似文献   
942.
Human cathepsin D is a lysosomal aspartic protease that has been implicated in breast cancer metastasis and Alzheimer's disease. Based on a crystal structure of a human cathepsin D-pepstatin A complex, a series of statine-containing inhibitors was designed, synthesized, and tested for inhibitory activity toward the enzyme in vitro. The compounds were modified systematically at individual positions (P4, P3, P2, P1, and P2t) with the aim of mapping the cathepsin D subsite preferences. The experimentally obtained SAR data were correlated on the basis of molecular modeling. Side-chain preferences for the peptidomimetic inhibitors differed from those found previously using peptide substrates (Scarborough PE et al., 1993, Protein Sci 2:264-276). In addition, the effects of single side-chain modifications were often nonadditive. Structure-activity relationships, modeling, and thermodynamic analysis indicated that entropy plays a major stabilizing role in inhibitor binding to cathepsin D.  相似文献   
943.
944.
945.
Considering the pathological significance of MMP-13 in breast and colon cancers, exosite-based inhibition of the C-terminal hemopexin (Hpx) domain could serve as an alternative strategy to develop selective inhibitors for MMP-13.Two of six lead compounds, compound 5 (2,3-dihydro-1,4-benzodioxine-5-carboxylic acid) and compound 6 (1-acetyl-4-hydroxypyrrolidine-2-carboxylic acid) exhibited considerable inhibitory activity against MMP-13. Complementing to this study, we have also shown the gene expression levels of MMP-13 within the subtypes of colon and breast cancers classified from patients’ tissue samples to provide a better understanding on which subtype of breast cancer patients would get benefited by MMP-13 inhibitors.Our current results show that compounds 5 and 6 could effectively inhibit MMP-13 and provide specific therapeutic possibilities in the treatment of inflammatory disorders and cancers. The characterization of these lead compounds would provide a better mechanistic understanding of exosite-based inhibition of MMP-13, which could overcome the challenges in the identification of other MMP catalytic domain-specific inhibitors.  相似文献   
946.
We explore mechanisms that enable cancer cells to tolerate PI3K or Akt inhibitors. Prolonged treatment of breast cancer cells with PI3K or Akt inhibitors leads to increased expression and activation of a kinase termed SGK3 that is related to Akt. Under these conditions, SGK3 is controlled by hVps34 that generates PtdIns(3)P, which binds to the PX domain of SGK3 promoting phosphorylation and activation by its upstream PDK1 activator. Furthermore, under conditions of prolonged PI3K/Akt pathway inhibition, SGK3 substitutes for Akt by phosphorylating TSC2 to activate mTORC1. We characterise 14h, a compound that inhibits both SGK3 activity and activation in vivo, and show that a combination of Akt and SGK inhibitors induced marked regression of BT‐474 breast cancer cell‐derived tumours in a xenograft model. Finally, we present the kinome‐wide analysis of mRNA expression dynamics induced by PI3K/Akt inhibition. Our findings highlight the importance of the hVps34‐SGK3 pathway and suggest it represents a mechanism to counteract inhibition of PI3K/Akt signalling. The data support the potential of targeting both Akt and SGK as a cancer therapeutic.  相似文献   
947.
Synaptic function crucially depends on uninterrupted synthesis and degradation of synaptic proteins. While much has been learned on synaptic protein synthesis, little is known on the routes by which synaptic proteins are degraded. Here we systematically studied how inhibition of the ubiquitin‐proteasome system (UPS) affects the degradation rates of thousands of neuronal and synaptic proteins. We identified a group of proteins, including several proteins related to glutamate receptor trafficking, whose degradation rates were significantly slowed by UPS inhibition. Unexpectedly, however, degradation rates of most synaptic proteins were not significantly affected. Interestingly, many of the differential effects of UPS inhibition were readily explained by a quantitative framework that considered known metabolic turnover rates for the same proteins. In contrast to the limited effects on protein degradation, UPS inhibition profoundly and preferentially suppressed the synthesis of a large number of synaptic proteins. Our findings point to the importance of the UPS in the degradation of certain synaptic proteins, yet indicate that under basal conditions most synaptic proteins might be degraded through alternative pathways.  相似文献   
948.
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is related to cellular activities. Abnormalities of this signaling pathway were discovered in various cancers, including hepatocellular carcinoma (HCC). The PI3K/mTOR dual inhibitors were proposed to have enhanced antitumor efficacies by targeting multiple points of the signaling pathway. We synthesized a series of propynyl-substituted benzenesulfonamide derivatives as PI3K/mTOR dual inhibitors. Compound 7k (NSC781406) was identified as a highly potent dual inhibitor, which exhibited potent tumor growth inhibition in the hepatocellular carcinoma BEL-7404 xenograft model. Compound 7k may be a potential therapeutic drug candidate for HCC.  相似文献   
949.
A new series of 4-anilinoquinazolines with C-6 ureido and thioureido side chains and various substituents at the C-4 anilino moiety was designed, synthesized and evaluated as wild type (WT) and mutant EGFR inhibitors. Most of the compounds inhibited EGFR kinase wild type (EGFR WT) with IC50 values in the low nanomolar range (<0.495–9.05 nM) and displayed more potent cytotoxic effect in BaF/3 expressing EGFR WT than reference compound gefitinib. The anti-proliferative effect of all synthesized compounds against gefitinib insensitive double mutant cell lines Ba/F3 expressing Del19/T790M and Ba/F3 expressing L858R/T790M were assayed. Compounds 4d, 6f, 7e showed significant inhibition (IC50 = 1.76–2.38 μM) in these mutant lines and significant Her2 enzyme inhibition (IC50 = 19.2–40.6 nM) compared to lapatinib (60.1 nM). The Binding mode of compounds 6d, 6f, 7a, 7b and 8b were demonstrated. Furthermore, growth inhibition against gefitinib insensitive cell lines PC9-GR4 (Del19/T790M) were tested, compounds 6f and 7e showed about eight and three folds respectively greater potency than gefitinib. Our structure–activity relationships (SAR) studies suggested that presence of ethyl piperidino urea/thiourea at 6-position and bulky group of (3-chloro-4-(3-fluorobenzyloxy)phenyl)amino at 4-position of quinazoline may serve as promising scaffold for developing inhibitors against wild type and mutant EGFR.  相似文献   
950.
The synthesis, the antioxidative properties and the lipoxygenase (LOX) and acetylcholinesterase (AChE) inhibition of a number of 4-hydroxy-chalcones diversely substituted as well as of a series of bis-chalcones ether derivatives are reported. The chalcones derivatives were readily produced using a Claisen–Schmidt condensation in a ultra sound bath in good yields. The structures of the synthesized compounds were confirmed by spectral and elemental analysis. Their lipophilicity is experimentally determined by reversed-phase thin-layer chromatography method. Most of them are potent in vitro inhibitors of lipid peroxidation and of LOX. Compounds b2 and b3 were found to be the most potent LOX and AChE inhibitors among the tested derivatives with a significant anti-lipid peroxidation profile. The results led us to propose these enone derivatives as new multifunctional compounds against Alzheimer's disease. The results are discussed in terms of structural and physicochemical characteristics of the compounds. Moreover, the pharmacokinetic profile of these compounds was investigated using computational methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号