首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   27篇
  国内免费   3篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   9篇
  2017年   12篇
  2016年   5篇
  2015年   11篇
  2014年   15篇
  2013年   21篇
  2012年   12篇
  2011年   18篇
  2010年   19篇
  2009年   32篇
  2008年   22篇
  2007年   25篇
  2006年   24篇
  2005年   16篇
  2004年   19篇
  2003年   17篇
  2002年   14篇
  2001年   8篇
  2000年   10篇
  1999年   15篇
  1998年   14篇
  1997年   23篇
  1996年   10篇
  1995年   12篇
  1994年   7篇
  1993年   15篇
  1992年   11篇
  1991年   3篇
  1990年   8篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   8篇
  1985年   13篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有514条查询结果,搜索用时 375 毫秒
31.
32.
Background  Chimpanzees have been widely used in hepatitis C virus (HCV) research, but their endangered status and high financial and ethical costs have prompted a closer review.
Methods  One hundred and nine articles published in 1998–2007 were analyzed for the number of chimpanzees involved, experimental procedures, objectives and other relevant issues.
Results  The articles described the use of 852 chimpanzees, but accounting for likely multiple uses, the number of individual chimpanzees involved here is estimated to be approximately 500. Most articles addressed immunology and inoculation studies. A significant portion of studies lasted for several months or years. Approximately one half of the individual chimpanzees were each used in 2–10 studies.
Conclusions  Significant financial and scientific resources have been expended in these chimpanzee HCV studies. Discussion addresses troublesome questions presented by some of the reviewed articles, including statistical validity, repeatability, and biological relevance of this model. These concerns merit attention as future approaches to HCV research and research priorities are considered.  相似文献   
33.
Intestinal entodiniomorphid ciliates are commonly diagnosed in the feces of wild apes of the genera Pan and Gorilla. Although some authors previously considered entodiniomorphid ciliates as possible pathogens, a symbiotic function within the intestinal ecosystem and their participation in fiber fermentation has been proposed. Previous studies have suggested that these ciliates gradually disappear under captive conditions. We studied entodiniomorphid ciliates in 23 captive groups of chimpanzees, three groups of captive bonobos and six populations of wild chimpanzees. Fecal samples were examined using Sheather's flotation and Merthiolate‐Iodine‐Formaldehyde Concentration (MIFC) methods. We quantified the number of ciliates per gram of feces. The MIFC method was more sensitive for ciliate detection than the flotation method. Ciliates of genus Troglodytella were detected in 13 groups of captive chimpanzees, two groups of bonobos and in all wild chimpanzee populations studied. The absence of entodiniomorphids in some captive groups might be because of the extensive administration of chemotherapeutics in the past or a side‐effect of the causative or prophylactic administration of antiparasitic or antibiotic drugs. The infection intensities of ciliates in captive chimpanzees were higher than in wild ones. We suppose that the over‐supply of starch, typical in captive primate diets, might induce an increase in the number of ciliates. In vitro studies on metabolism and biochemical activities of entodiniomorphids are needed to clarify their role in ape digestion. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
34.
35.
Several populations of chimpanzees have been reported to prey upon Dorylus army ants. The most common tool‐using technique to gather these ants is with “dipping” probes, which vary in length with regard to aggressiveness and lifestyle of the prey species. We report the use of a tool set in army ant predation by chimpanzees in the Goualougo Triangle, Republic of Congo. We recovered 1,060 tools used in this context and collected 25 video recordings of chimpanzee tool‐using behavior at ant nests. Two different types of tools were distinguished based on their form and function. The chimpanzees use a woody sapling to perforate the ant nest, and then a herb stem as a dipping tool to harvest the ants. All of the species of ants preyed upon in Goualougo are present and consumed by chimpanzees at other sites, but there are no other reports of such a regular or widespread use of more than one type of tool to prey upon Dorylus ants. Furthermore, this tool set differs from other types of tool combinations used by chimpanzees at this site for preying upon termites or gathering honey. Therefore, we conclude that these chimpanzees have developed a specialized method for preying upon army ants, which involves the use of an additional tool for opening nests. Further research is needed to determine which specific ecological and social factors may have shaped the emergence and maintenance of this technology. Am. J. Primatol. 72:17–24, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
36.
We examined the location of nest groups, spatial distribution of nests within a nest group, and attributes of individual nests of wild bonobos at Wamba, Democratic Republic of Congo. We also examined the seasonal factors influencing nesting behavior and compared the nest group size with the 1 hr party size during daytime. We defined a nest group to be a cluster of nests that were built in the same evening and found within 30 m from the other nearest nest. Examination of the largest gap within a nest group suggested that 30 m was an acceptable cutoff value. Monthly rainfall or fruit abundance did not significantly influence the monthly mean nest group size. Nests were built in the swamp forest for as many as 13% observation days, suggesting the need for reevaluation of the use of swamp forest by bonobos. The use of swamp forest was influenced not by seasonal rainfall or fruit abundance, but by the fruiting of specific species. Preferred tree species for building nests accounted for 19.8% of standing trees, which suggested that the selection of sleeping sites was not largely restricted by the distribution of specific species. The mean 1 hr party size was almost identical through the day and was similar to the mean nest group size. Parties of bonobos sometimes split into smaller nest groups, especially when feeding on non‐preferred fruits during fruit scarcity. By contrast, when feeding on preferred fruits while ranging in large parties, they often aggregated to form even larger nest groups. When sleeping in small‐ or middle‐sized nest groups, they tended to aggregate the next morning. These tendencies may reflect the gregarious nature of bonobos who prefer to range or sleep together as far as circumstances allow. Am. J. Primatol. 72:575–586, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
37.
Chimpanzees (Pan troglodytes) are well-known to eat invertebrates, especially social insects, across Africa, but allopatric bonobos (P. paniscus) are not. Bonobo insectivory is sparsely documented and apparently sporadic. However, the availability to bonobos of social insect prey and raw materials with which to make tools to exploit them is unknown. Here, we test a set of hypotheses that relates to questions of presence, abundance, density, and distribution of taxa that Pan consume and of vegetation suitable for making extractive foraging tools. We worked at Lui Kotal, Democratic Republic of Congo, where unprovisioned bonobos live in intact forest, far from villages. We collected insect and fecal specimens, transected for prey and assessed raw materials, and monitored mounds of Macrotermes. All but 1 of the major taxa of relevant termites, ants, and (stinging) honey bees were present. The 3 main taxa of insects that chimpanzees elsewhere eat —Macrotermes (fungus-growing termites), Dorylus (Anomma; army or driver ants), and Apis (honey bees)— were abundant and widespread, and usually at densities exceeding those at well-known chimpanzee study-sites. Similarly, woody and nonwoody vegetation suitable for making fishing probes was common at mounds of Macrotermes. There is no obvious ecological reason why bonobos should not use elementary technology in extractive foraging, e.g., termite-fish, ant-fish, ant-dip, honey-dip, to obtain social insects.  相似文献   
38.
Right-dominant handedness is unique and universal in Homo sapiens, suggesting that it is a highly derived trait. Our nearest living relations, chimpanzees, show lateralised hand preference when using tools, but not when otherwise manipulating objects. We report the first contrary data, that is, non-lateralised tool-use, for ant fishing as done in the Mahale Mountains of Tanzania. Unlike nut cracking, termite fishing, and fruit pounding, as seen elsewhere, in which most individuals are either significantly or wholly left- or right-biassed, ant fishers are mostly ambilateral. The clue to this exception lies in arboreality; all other patterns of chimpanzee elementary technology are done on the ground. Arboreal tool use usually requires not only that one hand be used to hold the tool, but also that the other hand gives postural support. When the supporting hand is fatigued, then it must be relieved by the other. Terrestrial tool use entails no such trading off. To test the hypothesis, we compared frequency of hand changing with the incidence of major hand support, and found them to be significantly positively correlated. The evolutionary transition from arboreality to terrestriality may have been a key enabler for the origins of human laterality.  相似文献   
39.
Background For veterinary management of non‐human primates in captivity, and conservation of wild‐living primates, management of their health risks is necessary. Incidences of pathogenic bacteria in the fecal specimens are considered as one of the useful indicators for non‐invasive health monitoring. Methods We carried out the detection of Clostridium perfringens in feces from captive and wild chimpanzees by the rapid polymerase chain reaction method. Results The bacterium was detected in most fecal specimens (80%) in captive chimpanzees. Contrarily, the detection rate in the wild chimpanzees was low, with 23% (n = 12) of 53 fecal samples from the Bossou group, Guinea, and 1.2% (1/81) in the Mahale group, Tanzania. Conclusions These results show that the intestinal microflora differs between Pan populations under various living conditions, being influenced by their diet and environment.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号