首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1465篇
  免费   73篇
  国内免费   169篇
  1707篇
  2024年   5篇
  2023年   15篇
  2022年   18篇
  2021年   24篇
  2020年   35篇
  2019年   37篇
  2018年   31篇
  2017年   37篇
  2016年   48篇
  2015年   31篇
  2014年   41篇
  2013年   68篇
  2012年   38篇
  2011年   40篇
  2010年   33篇
  2009年   62篇
  2008年   82篇
  2007年   82篇
  2006年   72篇
  2005年   76篇
  2004年   45篇
  2003年   51篇
  2002年   55篇
  2001年   53篇
  2000年   47篇
  1999年   21篇
  1998年   30篇
  1997年   22篇
  1996年   51篇
  1995年   26篇
  1994年   35篇
  1993年   34篇
  1992年   46篇
  1991年   35篇
  1990年   43篇
  1989年   27篇
  1988年   24篇
  1987年   20篇
  1986年   45篇
  1985年   17篇
  1984年   22篇
  1983年   15篇
  1982年   22篇
  1981年   12篇
  1980年   12篇
  1979年   6篇
  1978年   10篇
  1977年   5篇
  1976年   1篇
排序方式: 共有1707条查询结果,搜索用时 15 毫秒
121.
In stratified lakes, dominance of the phytoplankton by cyanobacteria is largely the result of their buoyancy and depth regulation. Bloom-forming cyanobacteria regulate the gas vesicle and storage polymer contents of their cells in response to interactive environmental factors, especially light and nutrients. While research on the roles of nitrogen and phosphorus in cyanobacterial buoyancy regulation has reached a consensus, evaluations of the roles of carbon have remained open to dispute. We investigated the various effects of changes in carbon availability on cyanobacterial buoyancy with continuous cultures of Microcystis aeruginosa Kuetz. emend. Elenkin (1924), a notorious bloom-former. Although CO2 limitation of photosynthesis can promote buoyancy in the short term by preventing the collapse of turgor-sensitive gas vesicles and/or by limiting polysaccharide accumulation, we found that sustained carbon limitation restricts buoyancy regulation by limiting gas vesicle as well as polysaccharide synthesis. These results provide an explanation for the positive effects of bicarbonate enrichment on cyanobacterial nitrogen uptake and bloom formation in lake experiments and may help to explain the pattern of cyanobacterial dominance in phosphorus-enriched, low-carbon lakes.  相似文献   
122.
Fayetteville Green Lake (FGL) is a recognized, extensively studied present‐day model of the stratified Proterozoic ocean. Nonetheless, biomass sedimentation in FGL remains hard to explain: while virtually all sediment pigments belong to photosynthetic sulfur bacteria from a chemocline, the isotopic carbon signature of the bulk organic matter suggests its epilimnetic phytoplankton origin. To explain the epilimnetic origin of sedimented carbon, we studied the dominant Synechococci, isolated from FGL. Here, we present experimental evidence that FGL Synechococci produce copious extracellular polysaccharides (EPS) especially when availability of inorganic carbon (Ci) is high relative to availability of other macronutrients, for example phosphorus. The accumulating EPS become impregnated with calcium, magnesium, and sodium cations and are released to the environment as ballasted cell coverings. Sedimentation of these cell‐free EPS can constitute the bulk of pigment‐free organic material in FGL sediment. Because increased availability of Ci specifically stimulates production of EPS and the accumulated EPS adsorb cations and become ballasted, we propose the universal role of cyanobacterial EPS in biomass sedimentation in the high‐Ci Paleoproterozoic ocean as well as in modern aquatic systems like FGL.  相似文献   
123.
The life cycle of the zygopteran odonate Lestes viridis in two seasonal streams in the Sierra Morena Mountains is inferred from size-frequency analyses of handnet samples of larvae and records of presence and reproductive activity of adults during three consecutive years. The egg stage (duration 5–6 months) overwinters, larval development is brief (6–8 weeks) and adults undergo a protracted, prereproductive, summer diapause (up to 3 months) before mating and ovipositing in late September, about one week after the first appreciable fall of rain, but before surface water reappears in the streams after having been absent for about four months during the hot, dry summer. Comparison between this life cycle and those of more northerly populations reveals a latitude-correlated cline in phenology resembling that found in some other northern hemisphere odonates that, like L. viridis, maintain an obligatorily univoltine life cycle at different latitudes.  相似文献   
124.
The nominal family group taxa of the Ephemeroptera are listed along with their authors, dates of publication and bibliographic references.  相似文献   
125.
126.
Monthly changes of physical, chemical and biological variables due a combination of artificial inflow of clean water, removal of hypolimnetic water, and diversion of sewage were studied in Lake Bled from December 1980 to December 1982.During the winter period 1981/82 the species composition of the phytoplankton changed. New species replaced those observed in previous years. We conclude that the combined effect of these three lake restoration measures was responsible for the sudden disappearance ofOscillatoria rubescens D.C. A marked decrease in some nutrients and an increase in temperature and oxygen concentration also occurred.  相似文献   
127.
There are several conflicting hypothesis that deal with the influence of flooding in the natural river–floodplain systems. According to the Flood Pulse Concept, the flood pulses are not considered to be a disturbance, while some recent studies have proven that floods can be a disturbance factor of phytoplankton development. In order to test whether flooding acts as a disturbance factor in the shallow Danubian floodplain lake (Lake Sakadaš), phytoplankton dynamics was investigated during two different hydrological years—extremely dry (2003) without flooding and usually flooded (2004). A total of 18 phytoplankton functional groups were established. The sequence of phytoplankton seasonality can be summarized P/D → E (W1, W2) → C/P (only in potamophase) → S2/H1/SN/S1 → W1/W2 → P/D. The canonical correspondence analysis (CCA) demonstrated that the water level was a significant environmental variable in 2004. Due to the higher total biomass of Bacillariophyceae established under potamophase conditions, floodings in the early spring seem to be a stimulating factor for phytoplankton development. On the other hand, the flood pulses in May and June had dilution effects on nutrients, so that a significantly lower phytoplankton biomass was established indicating that flooding pulses can be regarded as a disturbance event. Such conditions supported diatom development (D, P, C species) and prolonged its dominance in the total phytoplankton biomass. A long-lasting Cyanoprokaryota bloom (various filamentous species—S1, S2, SN and H1 representatives) with very high biomass characterized the limnophase (dry conditions) in summer and autumn of both years. In-lake variables (lake morphology, internal loadings of nutrients from sediments, light conditions) seem to be important for the appearance of Cyanoprokaryota bloom. The equilibrium phase was found during the Cyanoprokaryota bloom only in the extremely dry year. This study showed that depending on the time scale occurrence, flood pulses can be a stimulating or a disturbance factor for phytoplankton development in Lake Sakadaš. Handling editor: J. Padisak  相似文献   
128.
Rosette‐type submerged macrophytes are widely distributed across a range of water depths in shallow lakes and play a key role in maintaining ecosystem structures and functions. However, little is known about the rapid adaptive responses of such macrophytes to variations in water depth, especially at the juvenile stage. Here, we conducted a short‐term in situ mesocosm experiment, in which the juveniles of Vallisneria natans were exposed to a water depth gradient ranging from 20 to 360 cm. Twenty‐two leaf‐related traits were examined after 4 weeks of growth in a shallow lake. Most (18) traits of V. natans generally showed high plasticity in relation to water depth. Specifically, juveniles allocated more biomass to leaves and had higher specific leaf area, leaf length‐to‐width ratio, chlorophyll content, and carotenoids content in deep waters, displaying trait syndrome associated with high resource acquisition. In contrast, V. natans juveniles in shallow waters had higher leaf dry matter content, leaf soluble carbohydrate content, carotenoids per unit chlorophyll, and peroxidase activity, pertaining to resource conservation. Notably, underwater light intensity was found to be the key factor explaining the trait plasticity along the water depth gradient, and 1.30 mol photons m−2 d−1 (at 270 cm) could be the optimal irradiance level based on the total biomass of V. natans juveniles. The present study highlights the significance of leaf trait plasticity for rosette‐type macrophytes in response to variations in water depth and sheds new light on the differences between trade‐offs in deep‐ and shallow‐water areas.  相似文献   
129.
Assessment of the importance of internal nutrient loading is essential for managing and restoring eutrophic shallow lakes. To date, studies of internal loads have tended to focus on one of two abiotic processes, either molecular diffusion or sediment/nutrient entrainment (resuspension). This study presents a new approach to determining the non-biological fluxes of nitrogen (N) and phosphorus (P) from the sediment to the water column of shallow lakes. Three mutually exclusive flux processes: (i) molecular diffusion, (ii) turbulent diffusion (eddy diffusivity) and (iii) wind-induced resuspension of N and P, were related to a gradient of benthic shear stress. A model presented here allowed the durations and magnitudes of different non-biological fluxes to be calculated over time, based on benthic shear stress. Two site-specific critical shear stress thresholds determined which of the three flux processes dominated for any benthic shear stress value. The model was calibrated for a shallow lake and the continuous flux of nutrient from the sediment to the overlying water generated by each process during that period was calculated, enabling the estimation of the relative importance of each of the three flux processes over a one-year period. Wind-induced resuspension dominated the internal nutrient flux, operating for 38% of the time and contributing 0.9 T P year−1 and 10.2 T N year−1 to the internal nutrient load. In contrast, molecular diffusion only contributed 0.01–0.02 T P year−1 and 0.12–0.20 T N year−1 to the water column, while turbulent diffusion provided up to 0.6 T P year−1 and 6.2 T N year−1. Our model suggests that turbulent diffusion is a neglected and potentially important process contributing to internal nutrient loading in shallow lakes, whereas molecular diffusion appears to be relatively unimportant in lakes that experience turbulence at the sediment–water interface. Handling editor: L. Naselli-Flores  相似文献   
130.
Survival, growth and hatching of brown trout Salmo trutta embryos were studied using in situ incubation experiments in two lake outlet streams in Finland. The experimental design in both streams included an outlet site and a reference site far downstream. The date of hatching was recorded and the Elliott–Hurley model was then used to predict the time of emergence based on water temperature. For data analyses, the incubation period was divided into 'winter' (from fertilization to mid March) and 'spring' (from mid March until the end of the experiment). Temperature of the large-lake outlet remained at 1° C through the winter, while in other sites temperature was close to 0° C. In spring, temperature increased more slowly in the large-lake outlet. The survival of embryos was overall very high, from 83 to 98%, and they were larger in the outlets than in the downstream sites. Embryos hatched at the large-lake outlet in March, and 3–5 weeks later in the other sites. Although there were considerable between-site differences in hatching intervals, difference in expected 50% emergence dates of the earliest and latest site was only 4 days. Thus, any growth advantage that the outlet embryos had in winter disappeared by the end of the alevin period. Lake outlets, however, may be important for age 0 year brown trout later during the summer when other stream habitats do not provide adequate food resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号