首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  36篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有36条查询结果,搜索用时 9 毫秒
21.
Abstract. Above‐ground Net Primary Production (ANPP) is the main determinant of forage availability and hence of stocking density. A tool to track the seasonal and interannual changes in ANPP at the paddock level will be very important for livestock management. We studied the relationship between field ANPP data and the Normalized Difference Vegetation Index (NDVI) for rangelands of the Flooding Pampa of Argentina using spectral data provided by sensors on board of two satellites: NOAA/AVHRR and Landsat TM. The relationship between NDVI and ANPP was linear both for data derived from NOAA/AVHRR and Landsat TM. Changes in ANPP accounted for a large proportion of the temporal and spatial variation of NDVI: 71% of NOAA/AVHRR data and 74% of Landsat TM data. By inverting these models, ANPP may be inferred from NDVI data at a seasonal and paddock scale. NOAA/AVHRR data captured better the seasonal variation in ANPP and were less sensitive to local variations than Landsat TM data. In contrast, Landsat TM data were more sensitive to inter‐site differences in primary production, except for the winter months. Thus, combining information from these two sources offers a good alternative for monitoring rangeland production at high temporal and spatial resolution.  相似文献   
22.
23.
Abstract Flooding provokes the death of many dicotyledonous species in grazed grasslands of the Flooding Pampa in Argentina, including the clonal plant Ambrosia tenuifolia, which produce the opening of numerous gaps. The objective of this study was to investigate the recolonization of grassland by A. tenuifolia after this species disappeared due to the occurrence of prolonged flooding events. To this end, responses of seed germination to environmental factors associated with gaps, such as light quality and temperature regime, conditions related to seedling survival, and clonal growth of ramets outside the gaps were studied in two different experiments in the field. Environmental factors related to gaps promoted the recruitment of new genets. The combined effect of alternating temperatures and the high red : far‐red ratio set off germination from the soil seed bank; germination also was enhanced when signals were generated artificially under the intact canopy in the field. Higher resource availabilities and maximum seedling survival were recorded in canopy gaps, which were the focus of invasion. Grassland recolonization outside the gaps continued rapidly by clonal growth, from small gaps and large ones, even within the dense surrounding canopy. This provoked an intense competition with the other species. Gap opening by disturbances, seed germination in gaps and clonal growth were decisive for the recolonization of A. tenuifolia populations. This sequence of events triggered the recolonization of the plant community by this species, in sites where it had been eliminated by prolonged flooding. This process represents one of the most significant fluctuations in the vegetation dynamics of the Flooding Pampa Grasslands.  相似文献   
24.
25.
26.
Aims South American Pampa grasslands are habitats of great conservation interest, with a distinct and rich flora, but have been intensely converted to other land uses, including tree plantations. While necessity for restoration grows, no information on restoration potential of grasslands after afforestation exists. Here, we aim at analyzing composition and structure of grassland vegetation with a history of eucalyptus plantations in order to assess recovery potential of these areas. We hypothesized that areas with history of eucalyptus would differ from reference grasslands with no history of land-use change in terms of floristic and functional composition and would present lower species richness.  相似文献   
27.
Large herbivores may alter carbon and nutrient cycling in soil by changing above- and below-ground litter decomposition dynamics. Grazing effects may reflect changes in plant allocation patterns, and thus litter quality, or the site conditions for decomposition, but the relative roles of these broad mechanisms have rarely been tested. We examined plant and soil mediated effects of grazing history on litter mass loss and nutrient release in two grazing-tolerant grasses, Lolium multiflorum and Paspalum dilatatum, in a humid pampa grassland, Argentina. Shoot and root litters produced in a common garden by conspecific plants collected from grazed and ungrazed sites were incubated under both grazing conditions. We found that grazing history effects on litter decomposition were stronger for shoot than for root material. Root mass loss was neither affected by litter origin nor incubation site, although roots from the grazed origin immobilised more nutrients. Plants from the grazed site produced shoots with higher cell soluble contents and lower lignin:N ratios. Grazing effects mediated by shoot litter origin depended on the species, and were less apparent than incubation site effects. Lolium shoots from the grazed site decomposed and released nutrients faster, whereas Paspalum shoots from the grazed site retained more nutrient than their respective counterparts from the ungrazed site. Such divergent, species-specific dynamics did not translate into consistent differences in soil mineral N beneath decomposing litters. Indeed, shoot mass loss and nutrient release were generally faster in the grazed grassland, where soil N availability was higher. Our results show that grazing influenced nutrient cycling by modifying litter breakdown within species as well as the soil environment for decomposition. They also indicate that grazing effects on decomposition are likely to involve aerial litter pools rather than the more recalcitrant root compartment.  相似文献   
28.
Although habitat modification is considered one of the main causes of biodiversity loss, the relative contribution of different rural land uses to biodiversity conservation is far less known. Additionally, the realization of the multidimensionality of biodiversity demands studies integrating variation of functional traits and phylogenetic information as complements to address the effects of land use on the structure of animal communities. Herein, we investigated the effects of land use (i.e., intensive agricultural and extensive livestock rearing) on functional and phylogenetic diversity of anuran communities in farmland ponds from the Uruguayan savanna ecoregion, while considering the effects of local factors (i.e., water depth) on species composition. We surveyed adults and tadpoles in 22 ponds and quantified five traits related to tadpole feeding, habitat use, and predator avoidance. Tadpole identification was corroborated by DNA barcoding based on a fragment of the mitochondrial 16S rRNA gene. We observed a decline in phylogenetic mean nearest taxon distance associated with increase of surrounding agricultural land use. While land use intensification did not affect richness (functional or phylogenetic), ponds in livestock ranches hosted about four times more tadpoles than agricultural ponds. Functional evenness decreased with water depth, although such relationship disappeared when considering phylogenetic non-independence. Our results indicated that specific anuran clades were more sensitive to intensification in land use, reinforcing a recent view of phylogenetic homogenization following habitat conversion. Additionally, our study suggests that extensive cattle grazing over wide native pastures may provide an alternative more compatible with conservation than short-term crops in subtropical grasslands.  相似文献   
29.
More is less: agricultural impacts on the N cycle in Argentina   总被引:2,自引:0,他引:2  
Human impact on nitrogen cycling, in particular the introduction of reactive nitrogen in terrestrial and aquatic ecosystems, can be examined at multiple scales, from the global impact on atmospheric chemistry to the impact of human activities on soil organic matter and fertility at the scale of square meters. Nevertheless, anthropogenic loading of nitrogen cycling in natural and managed ecosystems can be seen most directly at the regional scale, where concentrated human activity results in disruption of the nitrogen balance, with consequences for biogeochemical cycling and their interactions. Differences in land-use and agricultural practices between North and South America, and the importance of economic drivers that determine the fate of new reactive nitrogen demonstrate a contrasting picture of human impact on N cycling when the consequences are considered at the global vs. the regional scale. In particular, in the Pampa region of Argentina, the central agricultural zone of the country, the expansion of soybean cultivation in the last 20 years and the use of synthetic fertilizers have resulted in an influx of reactive nitrogen into these systems, with unexpected consequences for the nitrogen balance. A mass balance of nitrogen for soybean demonstrates that increased nitrogen inputs from biological fixation do not compensate for losses due to seed export, such that most areas under soybean cultivation are currently experiencing a substantive net loss of nitrogen. In addition, other crops that are currently being fertilized still show a net loss of nitrogen also due to the effect of primary exports from these agroecosystems. These simple models demonstrate that socioeconomic factors in large part drive the contrasting effects of anthropogenic impact on nitrogen cycling at global vs. regional scales. The future impact on nitrogen cycling in the Americas requires an integration of both ecological factors and socioeconomic drivers that will ultimately determine human disruption of the nitrogen cycle.  相似文献   
30.
Our aim was to search for specific seed germinative strategies related to flooding escape in Setaria parviflora, a common species across the Americas. For this purpose, we investigated induction after floods, in relation to fluctuating temperature requirements for germination in seeds from mountain, floodplain and successional grasslands. A laboratory experiment was conducted in which seeds were imbibed or immersed in water at 5°C. Seeds were also buried in flood-prone and upland grasslands and exhumed during the flooding season. Additionally, seeds were buried in flooded or drained grassland mesocosms. Germination of exhumed seeds was assayed at 25°C or at 20°C/30°C in the dark or in the presence of red light pulses. After submergence or soil flooding, a high fraction (>32%) of seeds from the floodplain required fluctuating temperatures to germinate. In contrast, seeds from the mountains showed maximum differences in germination between fluctuating and constant temperature treatment only after imbibition (35%) or in non-flooded soil conditions (40%). The fluctuating temperature requirement was not clearly related to the foregoing conditions in the successional grassland seeds. Maximum germination could also be attained with red light pulses to seeds from mountain and successional grasslands. Results show that the fluctuating temperature requirement might help floodplain seeds to germinate after floods, indicating a unique feature of the dormancy of S. parviflora seeds from floodplains, which suggests an adaptive advantage aimed at postponing emergence during inundation periods. In contrast, the fluctuating temperature required for germination among seeds from mountain and successional grasslands show its importance for gap detection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号