首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1674篇
  免费   196篇
  国内免费   63篇
  2024年   6篇
  2023年   32篇
  2022年   23篇
  2021年   50篇
  2020年   87篇
  2019年   79篇
  2018年   56篇
  2017年   79篇
  2016年   71篇
  2015年   68篇
  2014年   78篇
  2013年   100篇
  2012年   60篇
  2011年   61篇
  2010年   58篇
  2009年   115篇
  2008年   108篇
  2007年   111篇
  2006年   112篇
  2005年   104篇
  2004年   77篇
  2003年   56篇
  2002年   40篇
  2001年   40篇
  2000年   24篇
  1999年   46篇
  1998年   22篇
  1997年   22篇
  1996年   21篇
  1995年   17篇
  1994年   17篇
  1993年   13篇
  1992年   11篇
  1991年   9篇
  1990年   6篇
  1989年   6篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1982年   2篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   7篇
  1971年   2篇
排序方式: 共有1933条查询结果,搜索用时 15 毫秒
101.
In vivo studies of hepatic carbohydrate metabolism in (genetically modified) conscious mice are hampered by limitations of blood and urine sample sizes. We developed and validated methods to quantify stable isotope dilution and incorporation in small blood and urine samples spotted onto filter paper. Blood glucose and urinary paracetamol-glucuronic acid were extracted from filter paper spots reproducibly and with high yield. Fractional isotopomer distributions of glucose and paracetamol-glucuronic acid when extracted from filter paper spots were almost identical to those isolated from the original body fluids. Rates of infusion of labeled compounds could be adjusted without perturbing hepatic glucose metabolism. This approach was used in mice to find the optimal metabolic condition for the study of hepatic carbohydrate metabolism. In fed mice, no isotopic steady state was observed during a 6-h label-infusion experiment. In 9-h-fasted mice, isotopic steady state was reached after 3 h of label infusion and important parameters in hepatic glucose metabolism could be calculated. The rate of de novo glucose-6-phosphate synthesis was 143 +/- 17 micromol kg(-1) min(-1) and partitioning to plasma glucose was 79.0 +/- 5.2%. In 24-h-fasted mice, abrupt changes were noticed in whole body and in hepatic glucose metabolism at the end of the experiment.  相似文献   
102.
Mangrove sediments from three different mangrove ecosystems (Coringa Wildlife Sanctuary in the Godavari Delta, Andhra Pradesh, India, and Galle and Pambala, south-west Sri Lanka) were analysed for their organic carbon content, elemental ratios (C:N) and carbon stable isotope composition. Organic carbon content (0.6 – 31.7% dry weight), C/N ratios (7.0 – 27.3) and 13C (between –29.4 and –20.6) showed a wide range of values. Lower stocks of organic carbon coincided with low C/N (atom) ratios and less negative 13C values, indicating import of marine or estuarine particulate suspended matter. High organic carbon stocks coincided with high C/N ratios and 13C values close, but not equal, to those of the mangrove vegetation. The variations observed in this study and published literature data could be adequately described by a simple two-end mixing model, whereby marine/estuarine suspended matter and mangrove litter were taken as end members. Thus, while in some mangrove ecosystems or vegetation zones, organic carbon stocks can be very high and are almost entirely of mangrove origin, there also appear to be cases in which deposited estuarine or marine suspended matter is the dominant source of organic carbon and nitrogen in mangrove sediments. This situation is remarkably similar to that observed in temperate salt marsh ecosystems where the importance of local vascular plant production to the sediment organic carbon pool is equally variable. The observed high variability in organic matter origin is thought to have a major impact on the overall carbon dynamics in intertidal mangrove ecosystems.  相似文献   
103.
Tate  Amanda W.  Hershey  Anne E. 《Hydrobiologia》2003,499(1-3):13-23
Carbon and nitrogen stable isotopic data from the primary producers in mangrove ecosystems are needed to investigate trophic links and biogeochemical cycling. Compared with other mangrove species (e.g. Rhizophora mangle) very few measurements have been conducted on the white mangrove, Laguncularia racemosa. The carbon and nitrogen stable isotopic and elemental compositions of L. racemosa were analyzed and compared from Florida and Belize. 13C values of L. racemosa from Florida (mean = –26.4) were slightly higher than those from Twin Cays, Belize (mean = -27.4), which may be due to higher salinity in some parts of the Florida site. There was no difference between the 15N values from L. racemosa from these two sites (Florida mean = 0.6; Belize mean = 0.3), which are indicative of nitrogen derived from nitrogen fixation in a planktonic marine system. However, higher 15N values from L. racemosa at Man of War Cay in Belize (11.4 and 12.3), which is fertilized by roosting marine birds (14.0), illustrate that L. racemosa can sensitively reflect alternative nitrogen sources. Although the isotopic data could not distinguish between Avicennia germinans, R. mangle and L. racemosa in Belize the L. racemosa had considerably higher C/N ratios (46.5 – 116.1) compared with the Florida samples (42.2 – 76.0) or the other mangrove species. Unlike some previous findings from R. mangle, substrate characteristics (e.g. salinity, NH4 +, and H2S) were not related to the isotopic or elemental composition of L. racemosa. 13C, 15N and C/N were analyzed for ecosystem components from L. racemosa habitats at Twin Cays, including other plants (e.g. R. mangle, A. germinans and seagrass), detritus, microbial mats and sediments. Results from mass-balance calculations show that mangrove detritus composes very little of the sediment, which is principally composed of microbial biomass (80 – 90%). Detritus at some sites is also influenced by sources other than that from L. racemosa, including seagrass leaves.  相似文献   
104.
Studies that have tested and failed to support the hypothesis that escalated species (e.g., those with predation-resistant adaptations) are more susceptible to elimination during mass extinctions have concentrated on the distribution and degree of morphological defenses in molluscan species. This morphological approach to determining level of escalation in bivalves may be oversimplified because it does not account for metabolic rate, which is an important measure of escalation that is less readily accessible for fossils. Shell growth rates in living bivalves are positively correlated with metabolic rate and thus are potential indicators of level of escalation. To evaluate this approach, we used oxygen isotopes to reconstruct shell growth rates for two bivalve species (Macrocallista marylandica and Glossus markoei) from Miocene-aged sediments of Maryland. Although both species are classified as non-escalated based on morphology, the isotopic data indicate that M. marylandica was a faster-growing species with a higher metabolic rate and G. markoei was a slower-growing species with a lower metabolic rate. Based on these results, we predict that some morphologically non-escalated species in previous tests of extinction selectivity should be reclassified as escalated because of their fast shell growth rates (i.e., high metabolic rates). Studies that evaluate the level of escalation of a fauna should take into account the energetic physiology of taxa to avoid misleading results.  相似文献   
105.
Shells of fully marine Middle to Upper Jurassic molluscs from England and north-western Poland were analysed with respect to their stable isotope (δ18O, δ13C) compositions, and palaeoecological and environmental life conditions of these molluscs were inferred from them. Light microscopical and SEM inspection and an analysis of the minor element content (Fe, Mn, Mg, Sr) suggest rather unaltered isotope signals. The δ18O and δ13C values show a characteristic distribution among three groups of co-occurring organisms. Benthic (adult) bivalves generally preserved higher δ18O and δ13C values than ammonites, whereas planktic bivalve larvae tend to possess the lowest δ18O but higher δ13C than adult bivalves. As this distribution pattern is found in numerous horizons and sections of Bathonian to Kimmeridgian age in NW Poland and England, it is thought to reflect real palaeoenvironmental parameters. All observations can be incorporated in a single model that assumes (i) seasonally induced temperature stratification of the water column, (ii) a correlation between phytoplankton blooms and reproduction season of planktic-planktotrophic bivalves, and (iii) insignificant vital effects with respect to the δ13C in bivalves, but strong biological control in ammonites. In addition, the δ18O evolution suggests that the Late Bajocian to Middle/Late Bathonian and Early Oxfordian to Late Kimmeridgian were considerably warmer than the latest Bathonian to Late Callovian time interval. The oxygen isotopic records from other European regions indicate a similar pattern of long-term palaeotemperature evolution. The comparatively high water temperatures during the Callovian to Oxfordian of the Isle of Skye (NW Scotland) are enigmatic, however. In the Early Oxfordian, sea surface and bottom temperatures began to rise in continental Europe and England. These changes coincide with a south-westward drift of the West European crustal plate, but a causal relationship remains to be demonstrated.  相似文献   
106.
Trace element contents and stable isotopic composition of Middle Campanian marl-limestone rhythmites and belemnite rostra of Belemnitella mucronata were investigated. High strontium and low iron as well as manganese and magnesium contents of belemnite calcite and bulk rock samples suggest no diagenetic overprint. However, the orange-coloured cathodoluminescence of coccolith-rich sediments indicates diagenetic cementation and/or recrystallization. The non-luminescent belemnite rostra reveal an extraordinary preservation of the microstructures that is interpreted to have been favoured by a silification of the outer rim of the belemnite rostra. Carbon isotope ratios of the coccolith limestones and belemnite rostra are comparable, with higher δ13C variations observed for belemnite calcite. The 1.5-2‰ depletion in δ18O of the marl-limestone rhythmites relative to belemnite calcite is explained by diagenetic alteration of the sediments. Palaeotemperatures, calculated from the δ18O values of the well-preserved belemnite rostra, are around 12.5 ± 2 °C and suggest rather low sea-surface temperatures for the Middle Campanian epicontinental sea of north Germany assuming a water depth of less than 100 m.  相似文献   
107.
We report on the measurements of carbon and nitrogen stable isotopes of both bone and teeth from a single site and population (Medieval Wharram Percy), undertaken to explore variations due to weaning in a past population. There have been a number of recent studies of weaning using delta(15)N values of ribs, and we indicate a number of assumptions that must be met before the results of such studies can be correctly interpreted. We found that rib collagen delta(15)N values decrease to adult levels after age 2 years, indicating that weaning occurred at or before this age. Rib collagen delta(13)C values are also more enriched than adult delta(13)C values before age 2 years, and we argue that this is due to the so-called "carnivore" effect in delta(13)C. We measured teeth and rib delta(15)N values from the same individuals and found that for individuals up to age 11 years, tooth dentine delta(15)N is higher than adult rib delta(15)N values, indicating that the dentine was formed during breast-feeding and that there was almost no turnover of dentine since. We observed some decrease in delta(13)C and delta(15)N rib values, compared to adult rib and teeth values, for the few years after weaning that may relate to a theoretically predicted physiological nitrogen imbalance during this period of rapid growth, but this is more likely due to a childhood diet (up to age 9) which was isotopically different from later diet, possibly consisting of a greater proportion of plant foods.  相似文献   
108.
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral 18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly 18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater 18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater 18O and salinity were observed. The two parameters were related to each other by the equation 18O Seawater (, VSMOW) = 0.281 × Salinity – 9.14. The high-resolution coral 18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater 18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral 18O calibrations against the in situ measurements show that temperature (T) is related to coral 18O ( c ) and seawater 18O ( w ) by the equation T (°C) = –5.38 ( c w ) –1.08. Our results demonstrate that coral 18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater 18O to this proxy, which could be ignored.  相似文献   
109.
A high prevalence of enamel hypoplasia in several herbivores from the early Pliocene Langebaanweg locality, South Africa, indicates general systemic stress during the growing years of life. The presence of several linear enamel hypoplasias per tooth crown in many teeth further suggest that these stress events may be episodic. The δ18O values along tooth crowns of mandibular second molars ofSivatherium hendeyi (Artiodactyla, Giraffidae) were used to investigate the cause of the stress events in this tooth type. Results show that weaning in this fossil giraffid occurred at a similar ontogenetic age to that in extant giraffes, and that the observed enamel hypoplasia towards the base of this tooth type manifested post-weaning. Further, high-resolution oxygen isotope analyses acrossS. hendeyi third molars suggest that the entire development of defective tooth crowns occurred under conditions of increased aridity in which the cool, rainy part of the seasonal cycle was missing. The high prevalence of this defect in many herbivores suggests that climatic conditions were not favourable. This study reiterates the value of stable isotope analyses in determining both the behaviour of fossil animals and the environmental conditions that prevailed during tooth development.  相似文献   
110.
This study presents a comprehensive analysis ofnitrogen (N) cycling in a second-order forestedstream in southern Michigan that has moderatelyhigh concentrations of ammonium (mean,16 g N/L) and nitrate (17 g N/L). Awhole-stream 15NH4 + addition wasperformed for 6 weeks in June and July, and thetracer 15N was measured downstream inammonium, nitrate, and detrital and livingbiomass. Ancillary measurements includedbiomass of organic matter, algae, bacteria andfungi, nutrient concentrations, hydrauliccharacteristics, whole-stream metabolism, andnutrient limitation assays. The resultsprovide insights into the heterotrophic natureof woodland streams and reveal the rates atwhich biological processes alter nitrogentransport through stream systems.Ammonium uptake lengths were 766–1349 m anduptake rates were 41–60 g N m–2min–1. Nitrate uptake could not bedetected. Nitrification rates were estimatedfrom the downstream increase in15N-enriched nitrate using a simulationmodel. The ammonium was removed bynitrification (57% of total uptake),heterotrophic bacteria and fungi associatedwith detritus (29%), and epilithic algae(14%). Growth of algae was likely limited bylight rather than nutrients, and dissolvedO2 revealed that the stream metabolism washeterotrophic overall (P:R = 0.2). Incubationsof detritus in darkened chambers showed thatuptake of 15N was mostly heterotrophic.Microbial N in detritus and algal N inepilithon appeared to reach isotopic steadystate with the dissolved ammonium, but theisotopic enrichment of the bulk detritus andepilithon did not approach that of ammonium,probably due to a large fraction of organic Nin the bulk samples that was not turning over. The actively cycling fraction of total N inorganic compartments was estimated from theisotopic enrichment, assuming uptake ofammonium but not nitrate, to be 23% forepilithon, 1% for fine benthic organic matter,5% for small woody debris, and 7% for leaves. These percentages agree with independentestimates of epilithic algal biomass, whichwere based on carbon:chlorophyll ratios in bulksamples and in algal fractions separated bydensity-gradient centrifugation in colloidalsilica, and of microbial N in the detritus,which were based on N released by chloroformfumigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号