全文获取类型
收费全文 | 1175篇 |
免费 | 128篇 |
国内免费 | 32篇 |
专业分类
1335篇 |
出版年
2024年 | 5篇 |
2023年 | 25篇 |
2022年 | 26篇 |
2021年 | 46篇 |
2020年 | 45篇 |
2019年 | 57篇 |
2018年 | 64篇 |
2017年 | 49篇 |
2016年 | 44篇 |
2015年 | 66篇 |
2014年 | 57篇 |
2013年 | 99篇 |
2012年 | 31篇 |
2011年 | 57篇 |
2010年 | 33篇 |
2009年 | 49篇 |
2008年 | 75篇 |
2007年 | 61篇 |
2006年 | 45篇 |
2005年 | 56篇 |
2004年 | 36篇 |
2003年 | 35篇 |
2002年 | 36篇 |
2001年 | 18篇 |
2000年 | 10篇 |
1999年 | 18篇 |
1998年 | 15篇 |
1997年 | 19篇 |
1996年 | 22篇 |
1995年 | 12篇 |
1994年 | 8篇 |
1993年 | 12篇 |
1992年 | 15篇 |
1991年 | 12篇 |
1990年 | 9篇 |
1989年 | 6篇 |
1988年 | 8篇 |
1987年 | 9篇 |
1986年 | 7篇 |
1985年 | 8篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 6篇 |
1981年 | 4篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有1335条查询结果,搜索用时 15 毫秒
41.
Stefan Kunz Marianne Spirig Claudia Ginsburg Andrea Buchstaller Philipp Berger Rainer Lanz Christoph Rader Lorenz Vogt Beat Kunz Peter Sonderegger 《The Journal of cell biology》1998,143(6):1673-1690
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons. 相似文献
42.
We describe a new method for using neural networks to predict residue contact pairs in a protein. The main inputs to the neural network are a set of 25 measures of correlated mutation between all pairs of residues in two "windows" of size 5 centered on the residues of interest. While the individual pair-wise correlations are a relatively weak predictor of contact, by training the network on windows of correlation the accuracy of prediction is significantly improved. The neural network is trained on a set of 100 proteins and then tested on a disjoint set of 1033 proteins of known structure. An average predictive accuracy of 21.7% is obtained taking the best L/2 predictions for each protein, where L is the sequence length. Taking the best L/10 predictions gives an average accuracy of 30.7%. The predictor is also tested on a set of 59 proteins from the CASP5 experiment. The accuracy is found to be relatively consistent across different sequence lengths, but to vary widely according to the secondary structure. Predictive accuracy is also found to improve by using multiple sequence alignments containing many sequences to calculate the correlations. 相似文献
43.
Ilaria Donelli Paola Taddei Philippe F. Smet Dirk Poelman Vincent A. Nierstrasz Giuliano Freddi 《Biotechnology and bioengineering》2009,103(5):845-856
The purpose of this study was to investigate the changes induced by a lypolytic enzyme on the surface properties of polyethylene terephthalate (PET). Changes in surface hydrophilicity were monitored by means of water contact angle (WCA) measurements. Fourier Transform Infrared spectroscopy (FTIR) in the Attenuated Total Reflectance mode (ATR) was used to investigate the structural and conformational changes of the ethylene glycol and benzene moieties of PET. Amorphous and crystalline PET membranes were used as substrate. The lipolytic enzyme displayed higher hydrolytic activity towards the amorphous PET substrate, as demonstrated by the decrease of the WCA values. Minor changes were observed on the crystalline PET membrane. The effect of enzyme adhesion was addressed by applying a protease after‐treatment which was able to remove the residual enzyme protein adhering to the surface of PET, as demonstrated by the behavior of WCA values. Significant spectral changes were observed by FTIR–ATR analysis in the spectral regions characteristic of the crystalline and amorphous PET domains. The intensity of the crystalline marker bands increased while that of the amorphous ones decreased. Accordingly, the crystallinity indexes calculated as band intensity ratios (1,341/1,410 cm?1 and 1,120/1,100 cm?1) increased. Finally, the free carboxyl groups formed at the surface of PET by enzyme hydrolysis were esterified with a fluorescent alkyl bromide, 2‐(bromomethyl)naphthalene (BrNP). WCA measurements confirmed that the reaction proceeded effectively. The fluorescence results indicate that the enzymatically treated PET films are more reactive towards BrNP. FTIR analysis showed that the surface of BrNP‐modified PET acquired a more crystalline character. Biotechnol. Bioeng. 2009;103: 845–856. © 2009 Wiley Periodicals, Inc. 相似文献
44.
The surface properties of earthworms were studied using nitrogen adsorption/desorption isotherm and dynamic contact angle measurement with the aim to understand their non-stain behaviour. The results obtained by applying dynamic contact angle technique using water, glycerol, cooking oil and dimethylsilicone show that the surface properties of earthworms are a function of time. The critical surface energy, calculated using advancing angle, is as low as 11 × 10~(-3) J·m~(-2). However this hydrophobic behaviour at the initial contact moment changes progressively into hydrophilic as time goes by. This behaviour together with the creeping movement of corrugated surface is believed to be responsible for the non-stain behaviour of earthworms. The nitrogen adsorption isotherm of dried skin of earthworms at 77.3 K exhibits more or less Type V isotherm with surface area of 13 m~2·g~(-1) calculated using the α_s plot. The Type V isotherm is the indication of weak interaction between nitrogen and the worm surface. 相似文献
45.
46.
XIU GUANG MAO GUANG JIAN ZHU SHUYI ZHANG STEPHEN J. ROSSITER 《Molecular ecology》2010,19(13):2754-2769
The repeated formation and loss of land‐bridges during the Pleistocene have had lasting impacts on population genetic structure. In the tropics, where island populations persisted through multiple glacial cycles, alternating periods of isolation and contact are expected to have driven population and taxonomic divergence. Here, we combine mitochondrial and nuclear sequence data with microsatellites to dissect the impact of Pleistocene climate change on intra‐specific diversification in the horseshoe bat Rhinolophus affinis. This taxon shows considerable morphological and acoustic variation: two parapatric subspecies (himalayanus and macrurus) occur on mainland China and a third (hainanus) on Hainan Island. Our phylogeographic reconstruction and coalescent analyses suggest the island subspecies formed from an ancestral population of himalayanus via two colonization events c. 800 000 years before present. R. a. hainanus then recolonized the mainland, forming macrurus and thus a secondary contact zone with himalayanus. Finally, macrurus recolonized Hainan following the LGM. We found that all three biological events corresponded to known periods of land‐bridge formation. Evidence of introgression was detected between macrurus and both its sister taxa, with geographical proximity rather than length of separation appearing to be the biggest determinant of subsequent genetic exchange. Our study highlights the important role of climate‐mediated sea level changes have had in shaping current processes and patterns of population structure and taxonomic diversification. 相似文献
47.
Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants 下载免费PDF全文
Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants’ increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti‐aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. 相似文献
48.
Fill Factor Losses in Cu2ZnSn(SxSe1−x)4 Solar Cells: Insights from Physical and Electrical Characterization of Devices and Exfoliated Films 下载免费PDF全文
Kong Fai Tai Oki Gunawan Masaru Kuwahara Shi Chen Subodh Gautam Mhaisalkar Cheng Hon Alfred Huan David B. Mitzi 《Liver Transplantation》2016,6(3)
Besides the open circuit voltage (VOC) deficit, fill factor (FF) is the second most significant parameter deficit for earth‐abundant kesterite solar cell technology. Here, various pathways for FF loss are discussed, with focus on the series resistance issue and its various contributing factors. Electrical and physical characterizations of the full range of bandgap (Eg = 1.0–1.5 eV) Cu2ZnSn(SxSe1?x)4 (CZTSSe) devices, as well as bare and exfoliated films with various S/(S + Se) ratios, are performed. High intensity Suns‐VOC measurement indicates a nonohmic junction developing in high bandgap CZTSSe. Grazing incidence X‐ray diffraction, Raman mapping, field emission scanning electron microscopy, and X‐ray photoelectron spectroscopy indicate the formation of Sn(S,Se)2, Mo(S,Se)2, and Zn(S,Se) at the high bandgap CZTSSe/Mo interface, contributing to the increased series resistance (RS) and nonohmic back contact characteristics. This study offers some clues as to why the record‐CZTSSe solar cells occur within a bandgap range centered around 1.15 eV and offers some direction for further optimization. 相似文献
49.
Abstract The role of surface topography as a defence against fouling in tropical sea stars was investigated. The sea stars Linckia laevigata, Fromia indica, Cryptasterina pentagona and Archaster typicus are not fouled and have paxillae (modified ossicles with a median vertical pillar) on their aboral surfaces, which varied in diameter, height and distance depending on species and position on the aboral surface, providing unique and complex surface microtopographies for each species. The surfaces of the sea stars L. laevigata, F. indica and A. typicus were moderately wettable, with their mean seawater contact angles, calculated from captive bubble measurements, being 60.1°, 70.3° and 57.3°, respectively. The seawater contact angle of C. pentagona could not be measured. To evaluate the effectiveness of the surface microtopographies in deterring the settlement of fouling organisms, field experiments with resin replicas of the four sea star species were conducted at three sites around Townsville, Australia, for 8 weeks during the dry and wet seasons. The fouling community and total fouling cover did not differ significantly between replicas of L. laevigata, F. indica, C. pentagona, A. typicus and control surfaces at any site during the dry season. Significant differences between fouling communities on the replicas of the sea stars and control surfaces were detected at two sites during the wet season. However, these differences were transitory, and the total fouling cover did not differ significantly between replicas of sea stars and control surfaces at two of the three sites. In contrast to recent literature on the effects of biofouling control by natural surfaces in the marine environment, the surface microtopographies of tropical sea stars alone were not effective in deterring the settlement and growth of fouling organisms. 相似文献
50.
Nature is a huge gallery of art involving nearly perfect structures and properties over the millions of years of development. Many plants and animals show water-repellent properties with fine micro-structures, such as lotus leaf, water skipper and wings of butterfly. Inspired by these special surfaces, the artificial superhydrophobic surfaces have attracted wide attention in both basic research and industrial applications. The wetting properties of superhydrophobic surfaces in nature are affected by the chemical compositions and the surface topographies. So it is possible to realize the biomimetic superhydrophobic surfaces by tuning their surface roughness and surface free energy correspondingly. This review briefly introduces the physical-chemical basis of superhydrophobic plant surfaces in nature to explain how the superhydrophobicity of plant surfaces can be applied to different biomimetic functional materials with relevance to technological applications. Then, three classical effects of natural surfaces are classified: lotus effect, salvinia effect, and petal effect, and the promising strategies to fabricate biomimetic su- perhydrophobic materials are highlighted. Finally, the prospects and challenges of this area in the future are proposed. 相似文献