首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1270篇
  免费   94篇
  国内免费   23篇
  1387篇
  2023年   11篇
  2022年   31篇
  2021年   30篇
  2020年   38篇
  2019年   40篇
  2018年   47篇
  2017年   27篇
  2016年   15篇
  2015年   26篇
  2014年   67篇
  2013年   85篇
  2012年   45篇
  2011年   34篇
  2010年   43篇
  2009年   72篇
  2008年   57篇
  2007年   90篇
  2006年   78篇
  2005年   81篇
  2004年   66篇
  2003年   52篇
  2002年   56篇
  2001年   32篇
  2000年   18篇
  1999年   30篇
  1998年   30篇
  1997年   23篇
  1996年   10篇
  1995年   22篇
  1994年   14篇
  1993年   14篇
  1992年   12篇
  1991年   10篇
  1990年   9篇
  1989年   10篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   2篇
  1982年   7篇
  1981年   5篇
  1980年   9篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1387条查询结果,搜索用时 15 毫秒
51.
Structural changes in different parts of the brain in rheumatoid arthritis (RA) patients have been reported. RA is not regarded as a brain disease. Body organs such as spleen and lung produce RA-relevant genes. We hypothesized that the structural changes in the brain are caused by changes of gene expression in body organs. Changes in different parts of the brain may be affected by altered gene expressions in different body organs. This study explored whether an association between gene expressions of an organ or a body part varies in different brain structures. By examining the association of the 10 most altered genes from a mouse model of spontaneous arthritis in a normal mouse population, we found two groups of gene expression patterns between five brain structures and spleen. The correlation patterns between the prefrontal cortex, nucleus accumbens, and spleen were similar, while the associations between the other three parts of the brain and spleen showed a different pattern. Among overall patterns of the associations between body organs and brain structures, spleen and lung had a similar pattern, and patterns for kidney and liver were similar. Analysis of the five additional known arthritis-relevant genes produced similar results. Analysis of 10 nonrelevant-arthritis genes did not result in a strong association of gene expression or clearly segregated patterns. Our data suggest that abnormal gene expressions in different diseased body organs may influence structural changes in different brain parts.  相似文献   
52.
The ability to generate and design antibodies recognizing specific targets has revolutionized the pharmaceutical industry and medical imaging. Engineering antibody therapeutics in some cases requires modifying their constant domains to enable new and altered interactions. Engineering novel specificities into antibody constant domains has proved challenging due to the complexity of inter‐domain interactions. Covarying networks of residues that tend to cluster on the protein surface and near binding sites have been identified in some proteins. However, the underlying role these networks play in the protein resulting in their conservation remains unclear in most cases. Resolving their role is crucial, because residues in these networks are not viable design targets if their role is to maintain the fold of the protein. Conversely, these networks of residues are ideal candidates for manipulating specificity if they are primarily involved in binding, such as the myriad interdomain interactions maintained within antibodies. Here, we identify networks of evolutionarily‐related residues in C‐class antibody domains by evaluating covariation, a measure of propensity with which residue pairs vary dependently during evolution. We computationally test whether mutation of residues in these networks affects stability of the folded antibody domain, determining their viability as design candidates. We find that members of covarying networks cluster at domain‐domain interfaces, and that mutations to these residues are diverse and frequent during evolution, precluding their importance to domain stability. These results indicate that networks of covarying residues exist in antibody domains for functional reasons unrelated to thermodynamic stability, making them ideal targets for antibody design. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
53.
A polyglutamine expansion of the N-terminal region of huntingtin (Htt) causes Huntington’s disease, a severe neurodegenerative disorder. Htt huge multidomain structure, the presence of disordered regions, and the lack of sequence homologs of known structure, so far prevented structural studies of Htt, making the study of its structure-function relationships very difficult. In this work, the presence and location of five Htt ordered domains (named from Hunt1 to Hunt5) has been detected and the structure of these domains has been predicted for the first time using a combined threading/ab initio modeling approach. This work has led to the identification of a previously undetected HEAT repeats region in the Hunt3 domain. Furthermore, a putative function has been assigned to four out of the five domains. Hunt1 and Hunt5, displaying structural similarity with the regulatory subunit A of protein phosphatase 2A, are predicted to play a role in regulating the phosphorylation status of cellular proteins. Hunt2 and Hunt3 are predicted to be homologs of two yeast importins and to mediate vescicles transport and protein trafficking. Finally, a comprehensive analysis of the Htt interactome has been carried out and is discussed to provide a global picture of the Htt’s structure–function relationships.  相似文献   
54.
Micrometric membrane lipid segregation is controversial. We addressed this issue in attached erythrocytes and found that fluorescent boron dipyrromethene (BODIPY) analogs of glycosphingolipids (GSLs) [glucosylceramide (BODIPY-GlcCer) and monosialotetrahexosylganglioside (GM1BODIPY)], sphingomyelin (BODIPY-SM), and phosphatidylcholine (BODIPY-PC inserted into the plasma membrane spontaneously gathered into distinct submicrometric domains. GM1BODIPY domains colocalized with endogenous GM1 labeled by cholera toxin. All BODIPY-lipid domains disappeared upon erythrocyte stretching, indicating control by membrane tension. Minor cholesterol depletion suppressed BODIPY-SM and BODIPY-PC but preserved BODIPY-GlcCer domains. Each type of domain exchanged constituents but assumed fixed positions, suggesting self-clustering and anchorage to spectrin. Domains showed differential association with 4.1R versus ankyrin complexes upon antibody patching. BODIPY-lipid domains also responded differentially to uncoupling at 4.1R complexes [protein kinase C (PKC) activation] and ankyrin complexes (in spherocytosis, a membrane fragility disease). These data point to micrometric compartmentation of polar BODIPY-lipids modulated by membrane tension, cholesterol, and differential association to the two nonredundant membrane:spectrin anchorage complexes. Micrometric compartmentation might play a role in erythrocyte membrane deformability and fragility.  相似文献   
55.
The discovery of naturally evolved fluorescent proteins and their subsequent tuning by protein engineering provided the basis for a large family of genetically encoded biosensors that report a variety of physicochemical processes occurring in living tissue. These optogenetic reporters are powerful tools for live‐cell microscopy and quantitative analysis at the subcellular level. In this review, we present an overview of the transduction mechanisms that have been exploited for engineering these genetically encoded reporters. Finally, we discuss current and future efforts towards the combined use of various optogenetic actuators and reporters for simultaneously controlling and imaging the physiology of cells and tissues.  相似文献   
56.

BACKGROUND:

Mental retardation (MR) is a heterogeneous dysfunction of the central nervous system exhibiting complex phenotypes and has an estimated prevalence of 1-3% in the general population. However, in about 50% of the children diagnosed with any form of intellectual disability or developmental delay the cause goes undetected contributing to idiopathic intellectual disability.

MATERIALS AND METHODS:

A total of 122 children with developmental delay/MR were studied to identify the microscopic and submicroscopic chromosome rearrangements by using the conventional cytogenetics and multiplex ligation dependent probe amplification (MLPA) analysis using SALSA MLPA kits from Microbiology Research Centre Holland [MRC] Holland.

RESULTS:

All the recruited children were selected for this study, after thorough clinical assessment and metaphases prepared were analyzed by using automated karyotyping system. None was found to have chromosomal abnormality; MLPA analysis was carried out in all subjects and identified in 11 (9%) patients.

CONCLUSION:

Karyotype analysis in combination with MLPA assays for submicroscopic micro-deletions may be recommended for children with idiopathic MR.  相似文献   
57.
58.
Maltose phosphorylase (EC 2.4.1.8) from Lactobacillus brevis was purified 29-fold over the crude extract. The final preparation was at least 80% pure and had a specific activity of 18 units/mg protein. The molecular weights of the native enzyme and of the component dissociated in sodium dodecyl sulfate were 150,000 and 80,000, respectively. The enzyme does not contain pyridoxal-5′-phosphate as a cofactor. It can not act on maltitol, malto-triitol, sucrose, lactose and trehalose, and essentially not on isomaltose, maltobionic acid, maltotriose and maltotetraose. Inhibitory effect was observed with CuSO4, HgCl2 and p-chloromercuribenzoate. Some other properties were also examined. A possibility of using this enzyme for the analysis of maltose was proposed.  相似文献   
59.
The relationships between the structural and energetic domains of lentil seedling amine oxidase (LSAO) were investigated using modifiers that target the active site and the carbohydrate moiety of the enzyme. An irreversible inhibitor, aminoguanidine, specifically modified the active site of the lentil enzyme, whereas sodium metaperiodate cleaves carbohydrate moieties covalently bound to the native enzyme. Differential scanning calorimetry (DSC) measurements were made on the modified LSAOs. Deconvolution of the reversible thermal DSC profiles of the modified enzyme gave three subpeaks (energetic domains), each of which was assigned to one of the three structural domains of the native protein. Our results led us to conclude that deglycosylation of LSAO has no effect on thermal stability, whereas binding of the inhibitor imparts more stability to the enzyme.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号