首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   94篇
  国内免费   23篇
  2023年   10篇
  2022年   30篇
  2021年   30篇
  2020年   38篇
  2019年   40篇
  2018年   47篇
  2017年   27篇
  2016年   15篇
  2015年   26篇
  2014年   67篇
  2013年   85篇
  2012年   45篇
  2011年   34篇
  2010年   43篇
  2009年   72篇
  2008年   57篇
  2007年   90篇
  2006年   78篇
  2005年   81篇
  2004年   66篇
  2003年   52篇
  2002年   56篇
  2001年   32篇
  2000年   18篇
  1999年   30篇
  1998年   30篇
  1997年   23篇
  1996年   10篇
  1995年   22篇
  1994年   14篇
  1993年   14篇
  1992年   12篇
  1991年   10篇
  1990年   9篇
  1989年   10篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   2篇
  1982年   7篇
  1981年   5篇
  1980年   9篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1385条查询结果,搜索用时 31 毫秒
131.
ATP-binding cassette (ABC) transporters are integral membrane proteins that utilised energy from ATP hydrolysis to translocate substrates across the membrane. In addition to the common nucleotide-binding domains (NBDs) and transmembrane domains (TMDs), the methionine ABC transporter has C-terminal regulatory domains (C2 domains) that belong to ACT protein family. When the amount of methionine in the cell is high, the transport stops. This phenomenon is called trans-inhibition. To understand how a trans-inhibited protein returns to an uninhibited, resting state, we performed steered molecular dynamic simulations with and without the substrates. From the simulations, we observed some important conformational changes in the whole ABC transporter, including the constriction in the translocation pathway in the TMDs and approach of the NBDs. However, the C2 domains behaved differently in two types of the simulations. These findings might help to explain the relationship of the conformational changes of the C2 domains with the rearrangements of the NBDs or TMDs, and provide a way to understand the trans-inhibition from an opposite direction.  相似文献   
132.
Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress‐regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a‐null mice develop a claustrophobia‐like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single‐nucleotide polymorphisms (SNPs) in the non‐coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self‐interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a‐induced filopodia formation in neurons. In silico analysis of three non‐synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus–Merzbacher disease.

  相似文献   

133.

Background

The study of nuclear architecture using Chromosome Conformation Capture (3C) technologies is a novel frontier in biology. With further reduction in sequencing costs, the potential of Hi-C in describing nuclear architecture as a phenotype is only about to unfold. To use Hi-C for phenotypic comparisons among different cell types, conditions, or genetic backgrounds, Hi-C data processing needs to be more accessible to biologists.

Results

HiCdat provides a simple graphical user interface for data pre-processing and a collection of higher-level data analysis tools implemented in R. Data pre-processing also supports a wide range of additional data types required for in-depth analysis of the Hi-C data (e.g. RNA-Seq, ChIP-Seq, and BS-Seq).

Conclusions

HiCdat is easy-to-use and provides solutions starting from aligned reads up to in-depth analyses. Importantly, HiCdat is focussed on the analysis of larger structural features of chromosomes, their correlation to genomic and epigenomic features, and on comparative studies. It uses simple input and output formats and can therefore easily be integrated into existing workflows or combined with alternative tools.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0678-x) contains supplementary material, which is available to authorized users.  相似文献   
134.
135.
Human Dickkopf‐1 (huDKK1), an inhibitor of the canonical Wnt‐signaling pathway that has been implicated in bone metabolism and other diseases, was expressed in engineered Chinese hamster ovary cells and purified. HuDKK1 is biologically active in a TCF/lef‐luciferase reporter gene assay and is able to bind LRP6 coreceptor. In SDS‐PAGE, huDKK1 exhibits molecular weights of 27–28 K and 30 K at ~ 1:9 ratio. By MALDI‐MS analysis, the observed molecular weights of 27.4K and 29.5K indicate that the low molecular weight form may contain O‐linked glycans while the high molecular weight form contains both N‐ and O‐linked glycans. LC‐MS/MS peptide mapping indicates that ~ 92% of huDKK1 is glycosylated at Asn225 with three N‐linked glycans composed of two biantennary forms with 1 and 2 sialic acid (23% and 60%, respectively), and one triantennary structure with 2 sialic acids (9%). HuDKK1 contains two O‐linked glycans, GalNAc (sialic acid)‐Gal‐sialic acid (65%) and GalNAc‐Gal[sialic acid] (30%), attached at Ser 30 as confirmed by β‐elimination and targeted LC‐MS/MS. The 10 intramolecular disulfide bonds at the N‐ and C‐terminal cysteine‐rich domains were elucidated by analyses including multiple proteolytic digestions, isolation and characterization of disulfide‐containing peptides, and secondary digestion and characterization of selected disulfide‐containing peptides. The five disulfide bonds within the huDKK1 N‐terminal domain are unique to the DKK family proteins; there are no exact matches in disulfide positioning when compared to other known disulfide clusters. The five disulfide bonds assigned in the C‐terminal domain show the expected homology with those found in colipase and other reported disulfide clusters.  相似文献   
136.
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.  相似文献   
137.
Peng L  Kapp EA  McLauchlan D  Jordan TW 《Proteomics》2011,11(22):4376-4384
Although there are now multiple methods for the analysis of membrane proteomes, there is relatively little systematic characterization of proteomic workflows for membrane proteins. The Asia Oceania Human Proteome Organisation (AOHUPO) has therefore embarked on a Membrane Proteomics Initiative (MPI) using a large range of workflows. Here, we describe the characterization of the MPI mouse liver microsomal membrane Standard using SDS-PAGE prior to in-gel tryptic digestion and LC-ESI-MS/MS. The Na(2) CO(3) wash followed by SDS-PAGE prior to in-gel tryptic digestion and LC-MS/MS strategy was effective for the detection of membrane proteins with 47.1% of the identified proteins being transmembrane proteins. Gene Ontology term enrichment analysis showed that biological processes involving transport, lipid metabolism, cell communication, cell adhesion, and cellular component organization were significantly enriched. Comparison of the present data with the previously published reports on mouse liver proteomes confirmed that the MPI Standard provides an excellent resource for the analysis of membrane proteins in the AOHUPO MPI.  相似文献   
138.
Following an enzymatic procedure for softening the egg envelope, blastomeres in the embryo of the polychaete Platynereis dumerilii were injected with TRITC-dextran. Injection was successful in the following blastomeres: AB, CD, A, B, C, D, 1a-1d, 1A-1D, 4d, and 4d(1). The distribution of fluorescent label was recorded by confocal laser scanning microscopy of young, three-segmented worms after 3 or 4 days of development, in some cases also in 1-day-old trochophore larvae. Results were documented by single optical sections, by stacking a limited number or a complete set of optical sections, and by computer-generated surface views of both the labeled tissue domains and the body contours from complete image stacks of whole worms. With respect to their descent from the embryonic cell pattern, five major compartments can be distinguished which together compose the body of the young worm: 1) The epispheric, epidermal, and neural region of the head, composed of four domains arranged as quasi-radial sectors derived from micromeres 1a, 1b (left and right ventral), and 1c and 1d (right and left dorsal). 2) A posttrochal epidermal region of the head originating from micromeres 2a(1)-2c(1) and constituting the ventral and lateral posttrochal epidermis of the head. 3) A stomodeal-ectomesodermal region of the head, including the stomodeum (micromeres 2a(2) and 2c(2)), its mesodermal envelope, and head mesoderm (micromeres 3a-3d). 4) A solid cone composed of the four terminal macromeres 4A-4D, forming the core of the trunk as the endoderm anlage. 5) An epidermal and mesodermal coating of the trunk originating from the dorsal micromeres 2d and 4d. The region of the so-called (first, anterior) peristomial cirri at the posterior flanks of the head is also composed of 2d- and 4d-derived trunk tissue, thus corroborating the postulated descent of this region and its appendages from a cephalized anteriormost trunk segment and its parapodia. The cell-lineage domains of the first and third micromere tiers are arranged left or right of the sagittal plane, while two micromeres of the second quartet are in a lateral and, initially, two in a median position (2b ventral and 2d dorsal). The offspring of micromere 2d expand from a dorsal position toward the ventral midline and those of cell 4d from a posterior-dorsal site toward the anterior, initially forming two lateral bands. In the epispheric part of the head, part of the neurectodermal tissue derived from micromeres 1a and 1b interweaves in a medio-sagittal bar, and part of the first micromere offspring of all four quadrants (1a-1d) combine in forming a central brain neuropil. Each of the latter sends neurites through both of the circumesophageal connectives. Paired muscle tracts extend through the head toward the base of the antennae and are probably derived from micromeres 3a and 3b. A mesodermal envelope of the stomodeum is probably built by the 3c and 3d micromeres. The formation of symmetry and the nature of the body axes in the embryo and adult of Platynereis dumerilii are discussed. J. Morphol.  相似文献   
139.
Common domain databases contain sequence motifs which belong to the ubiquitin fold family and are called Ras binding (RB) and Ras association (RalGDS/AF6 Ras associating) (RA) domains. The name implies that they bind to Ras (or Ras-like) GTP-binding proteins, and a few of them have been documented to qualify as true Ras effectors, defined as binding only to the activated GTP-bound form of Ras. Here we have expressed a large number of these domains and investigated their interaction with Ras, Rap and M-Ras. While their (albeit weak) sequence homology suggest that the domains adopt a common fold, not all of them bind to Ras proteins, irrespective of whether they are called RB or RA domains. We used fluorescence spectroscopy and isothermal titration calorimetry to show that the binding affinities vary over a large range, and are usually specific for either Ras or Rap. Moreover, the specificity is dictated by a set of key residues in the interface. Stopped-flow kinetic analysis showed that the association rate constants determine the different affinities of effector binding, while the dissociation rate constants are in a similar range. Manual sequence analysis allowed us to define positively charged sequence epitopes in certain secondary structure elements of the ubiquitin fold (beta1, beta2 and alpha1) which are located at similar positions and comprise the hot spots of the binding interface. These residues are important to qualify an RA/RB domain as a true candidate Ras or Rap effector.  相似文献   
140.
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号