首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   16篇
  国内免费   13篇
  2023年   7篇
  2022年   11篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   10篇
  2017年   9篇
  2016年   2篇
  2015年   35篇
  2014年   35篇
  2013年   46篇
  2012年   29篇
  2011年   27篇
  2010年   29篇
  2009年   24篇
  2008年   29篇
  2007年   24篇
  2006年   20篇
  2005年   26篇
  2004年   20篇
  2003年   23篇
  2002年   23篇
  2001年   14篇
  2000年   19篇
  1999年   11篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1984年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有525条查询结果,搜索用时 15 毫秒
81.
Both tyrosine phosphorylation and calpain-mediated truncation of ionotropic glutamate receptors are important mechanisms for synaptic plasticity. Previous work from our laboratory has shown that calpain activation results in truncation of the C-terminal domains of several glutamate receptor subunits. To test whether and how tyrosine phosphorylation of glutamate ionotropic receptor subunits modulates calpain susceptibility, synaptic membranes were phosphorylated by Fyn or Src, two members of the Src family tyrosine kinases. Tyrosine phosphorylation of synaptic membranes by Src significantly reduced calpain-mediated truncation of both NR2A and NR2B subunits of NMDA receptors, but not of GluR1 subunits of AMPA receptors. In contrast, phosphorylation with Fyn significantly protected calpain-mediated truncation of GluR1 subunits of AMPA receptors, but enhanced calpain-mediated truncation of NR2A subunits of NMDA receptors. Similar results were observed with NR2A and NR2B C-terminal domain fusion proteins phosphorylated by Fyn or Src before incubation with calpain and calcium. In addition, phosphorylation of NR2A and NR2B C-terminal fusion proteins by Fyn or Src enhanced their binding to spectrin and PSD-95. Thus, tyrosine phosphorylation impairs or facilitates calpain-mediated truncation of glutamate receptor subunits, depending on which tyrosine kinase is activated. Such mechanisms could serve to regulate receptor integrity and location, in addition to modulating channel properties.  相似文献   
82.
DEP domain containing mTOR-interacting protein (DEPTOR) plays pivotal roles in regulating metabolism, growth, autophagy and apoptosis by functions as an endogenous inhibitor of mTOR signaling pathway. Activated by phosphatidic acid, a second messenger in mTOR signaling, DEPTOR dissociates from mTORC1 complex with unknown mechanism. Here, we present a 1.5 Å resolution crystal structure, which shows that the N-terminal two tandem DEP domains of hDEPTOR fold into a dumbbell-shaped structure, protruding the characteristic β-hairpin arms of DEP domains on each side. An 18 amino acids DDEX motif at the end of DEP2 interacts with DEP1 and stabilizes the structure. Biochemical studies showed that the tandem DEP domains directly interact with phosphatidic acid using two distinct positively charged patches. These results provide insights into mTOR activation upon phosphatidic acid stimulation.  相似文献   
83.
According Global Cancer Statistics 2020 GLOBOCAN estimates female breast cancer was found as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), and the fourth leading cause (6.9%) of cancer death among women worldwide. Identification of new diagnostic marker sharply characterize the tumor feature is intensive need. The present work was performed to investigate the involvement of the INF-γ + 874 T/A gene polymorphism in different breast cancer prognostic factors. Polymorphism detection analysis was performed on 163 subjects from breast cancer patients, 79 with inflamed cells of breast patients and 144 controls. The gene polymorphism was detected using the amplification refractory mutation system- polymerase chain reaction method (ARMS-PCR). The distribution of INF-γ T + 874A gene polymorphism shows strong significant association between INF-γ + 874 T/A genotypes TT in BC patients (ORTT: 6.41 [95% CI = 2.72–15.1] P < 0.0001) as well as strong significant association regarding T allele (ORT: 1.99 [95% CI = 1.43–2.76] P < 0.0001) when compared to the healthy control. In ICB group the strong association was noted with INF-γ + 874 T/A genotypes AT genotype (ORAT: 2.28 [95% CI = 1.22–4.29] P = 0.007). From the different histological BC hormonal markers the human epidermal growth factor receptor 2 (HER2) was showing significant association in INF-γ + 874 T/A genotypes TT (P = 0.03) and recessive model (TT versus AA + AT P = 0.03). Concerning different BC prognostic models, the poor prognostic one of luminal B, (ER+ve PR+ve Her2+ve) show significant association in the host INF-γ + 874 T/A genotype (TT, P = 0.03) and recessive model (TT versus AA + AT P = 0.02) when compared to the good prognostic hormonal status luminal A model, (ER+ve PR+ve Her2-ve). It seems that this is the first study that interested in correlate the INF-γ + 874 T/A gene polymorphisms in Egyptian BC patients. T allele, TT genotype and recessive model of the INF-γ + 874 T/A gene variants were documented as risk factors for BC pathogenesis. It may be used as practical biomarker to guide the BC carcinogenesis and risk process.  相似文献   
84.
Intramembrane metalloproteases are nearly ubiquitous in living organisms and they function in diverse processes ranging from cholesterol homeostasis and the unfolded protein response in humans to sporulation, stress responses, and virulence of bacteria. Understanding how these enzymes function in membranes is a challenge of fundamental interest with potential applications if modulators can be devised. Progress is described toward a mechanistic understanding, based primarily on molecular genetic and biochemical studies of human S2P and bacterial SpoIVFB and RseP, and on the structure of the membrane domain of an archaeal enzyme. Conserved features of the enzymes appear to include transmembrane helices and loops around the active site zinc ion, which may be near the membrane surface. Extramembrane domains such as PDZ (PSD-95, DLG, ZO-1) or CBS (cystathionine-β-synthase) domains govern substrate access to the active site, but several different mechanisms of access and cleavage site selection can be envisioned, which might differ depending on the substrate and the enzyme. More work is needed to distinguish between these mechanisms, both for enzymes that have been relatively well-studied, and for enzymes lacking PDZ and CBS domains, which have not been studied. This article is part of a Special Issue entitled: Intramembrane Proteases.  相似文献   
85.
86.
87.
Previous work established a coumarin scaffold as a starting point for inhibition of Mycobacterium tuberculosis (Mtb) FadD32 enzymatic activity. After further profiling of the coumarin inhibitor 4 revealed chemical instability, we discovered that a quinoline ring circumvented this instability and had the advantage of offering additional substitution vectors to further optimize. Ensuing SAR studies gave rise to quinoline-2-carboxamides with potent anti-tubercular activity. Further optimization of ADME/PK properties culminated in 21b that exhibited compelling in vivo efficacy in a mouse model of Mtb infection.  相似文献   
88.
Lymph node (LN) cells of Fas-mutant mice lpr/lpr (lpr) and lpr cg /lpr cg (lpr cg ) express an increased level of Fas ligand (FasL) (CD95L). We examined the antitumor potential of cell-bound FasL on these LN cells against Fas+ tumor cells. Fas+ F6b and Fas N1d cells were produced from murine hepatoma MH134 (Fas) by gene transfection. lpr and lpr cg LN cells inhibited growth of F6b but not N1d cells in vitro. Neither gld/gld lpr/lpr (gld/lpr) LN cells, which lack both FasL and Fas, nor wild-type LN cells showed growth-inhibitory activities against F6b and N1d cells. The effector cells and molecule were CD4CD8 T cells and FasL, respectively. The tumor neutralization test and adoptive transfer demonstrated that lpr and lpr cg , but not gld/lpr, LN cells retarded the growth of F6b cells. Although anti-Fas antibody and FasL cause severe liver failure, wild-type mice injected with lpr LN cells appeared clinically normal. Adoptive transfer of lpr LN cells to F6b-bearing mice exerted the same antitumor activity in wild-type and gld/lpr recipient mice, indicating the applicability of cell-bound FasL for Fas-mediated target therapy of cancer. These results suggest that antitumor activity was dependent on the Fas-FasL system and that lymphoid cells overexpressing FasL can be powerful antitumor effector cells against Fas+ tumor cells. Received: 16 March 1998 / Accepted: 28 July 1998  相似文献   
89.
Discs large (DLG) MAGUKs are abundantly expressed in glutamatergic synapses, crucial for synaptic transmission, and plasticity by anchoring various postsynaptic components including glutamate receptors, downstream scaffold proteins and signaling enzymes. Different DLG members have shared structures and functions, but also contain unique features. How DLG family proteins function individually and cooperatively is largely unknown. Here, we report that PSD-95 PDZ3 directly couples with SH3–GK tandem in a PDZ ligand binding-dependent manner, and the coupling can promote PSD-95 dimerization and multimerization. Aided by sortase-mediated protein ligation and selectively labeling, we elucidated the PDZ3/SH3–GK conformational coupling mechanism using NMR spectroscopy. We further demonstrated that PSD-93, but not SAP102, can also undergo PDZ3 ligand binding-induced conformational coupling with SH3–GK and form homo-oligomers. Interestingly, PSD-95 and PSD-93 can also form ligand binding-induced hetero-oligomers, suggesting a cooperative assembly mechanism for the mega-N-methyl-d-aspartate receptor synaptic signaling complex. Finally, we provide evidence showing that ligand binding-induced conformational coupling between PDZ and SH3–GK is a common feature for other MAGUKs including CASK and PALS1.  相似文献   
90.
Emerging data have implicated a critical role for CD4 in the pathogenesis of systemic lupus erythematosus (SLE). This study was designed to delineate the contribution of CD4+ T cells in the pathogenesis of SLE disease. Forty-four patients (3 male: 41 female) and 20 healthy volunteers (4 male: 16 female) were included in the study. CD4+ lymphocytes analysis was done using three-color flow cytometry with antibodies against human-CD95, a prototype cell death receptor, and the chemokine receptor-7 (CCR7) after gating for lymphocytes based on the forward and side scatter. Serum levels of IL-6, IL-12, IL-17, TNF-α and IL-10 cytokines were assayed using ELISA. Disease activity was assessed using the SLE disease activity index (SLEDAI). Based on the expression of CCR7 and CD95, CD4+ lymphocytes were subdivided into three particular subsets; CD4+CD95+CCR7+ cells, CD4+CD95CCR7+ cells and CD4+CD95+CCR7 cells. Percentage of CD4+CD95+CCR7+ cell subset was significantly higher in patients with SLE with active disease (SLEDAI > 6) and inactive (SLEDAI < 6) as compared with controls (P = 0.005), and it showed a significant positive correlation with ANA titer (P = 0.01), and a negative correlation with WBCs count (P = 0.001). CD4+CD95+CCR7 cell subset was significantly higher in active SLE patients in comparison to patients with inactive disease and controls (P = 0.05, P = 0.005 respectively), and it correlates positively with SLEDAI, IL-6 and IL-17 levels (P = 0.001, 0.05, 0.01 respectively), and negatively with blood WBCs counts (P = 0.001). The third CD4+CD95CCR7+cell subset was found significantly lower in SLE patients compared with controls, and it was found negatively correlated with IL-10, IL-6, and IL-17. The results show that CD4+CD95+subset lacking expression of CCR7 is associated with cell mediated inflammatory response as manifested by its correlation with signs of inflammation, inflammatory cytokines and disease activity index. Whereas, CD4+CD95+CCR7+ correlate more with antibody immune responses as manifested by association with serum ANA. These data suggest disparate roles of these cell subsets in the pathophysiology of SLE. A better understanding of the characteristics of CD4 cell subsets may shed light on the pathogenesis of autoimmune diseases, particularly SLE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号