首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   16篇
  国内免费   13篇
  2023年   7篇
  2022年   11篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   10篇
  2017年   9篇
  2016年   2篇
  2015年   35篇
  2014年   35篇
  2013年   46篇
  2012年   29篇
  2011年   27篇
  2010年   29篇
  2009年   24篇
  2008年   29篇
  2007年   24篇
  2006年   20篇
  2005年   26篇
  2004年   20篇
  2003年   23篇
  2002年   23篇
  2001年   14篇
  2000年   19篇
  1999年   11篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1984年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有525条查询结果,搜索用时 31 毫秒
11.
ERCC4 plays an essential role in the nucleotide excision repair (NER) pathway, which is involved in the removal of a wide variety of DNA lesions. To determine whether the ERCC4 tagging SNPs (tSNPs) are associated with risk of gastric cancer, we conducted a hospital-based case-control study of 350 cases and 468 cancer-free controls. In the logistic regression (LR) analysis, we found a significantly decreased risk of gastric cancer associated with the rs744154 GC/CC genotypes [adjusted odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.42–0.75, false discovery rate (FDR) P = 0.003] compared with the wild-type GG genotype. Haplotype-based association study revealed that the CGC haplotype that containing the rs744154 C allele can decrease the risk of gastric cancer compared with the most common haplotype GGT (adjusted OR = 0.61, 95% CI = 0.46–0.81). Using the multifactor dimensionality reduction (MDR) analysis, we identified that the SNP rs744154 and smoking status were the best two predictive factors for gastric cancer with a testing accuracy of 55.76% and a perfect cross-validation consistency (CVC) of 10 (P = 0.001). Furthermore, the smokers with the rs744154 GC/CC genotypes showed a decreased risk of gastric cancer (adjusted OR = 0.55, 95% CI = 0.35–0.85) compared with the smokers with the GG genotype using multivariate LR analysis. The above findings consistently suggested that genetic variants in the ERCC4 gene may play a protective role in the etiology of gastric cancer, even in the smokers.  相似文献   
12.
Geranylgeranyltransferase I (GGT) is a prenyltransferase that mediates lipid modification of Rho small GTPases, such as Rho, Rac, and Cdc42, which are important for neuronal synaptogenesis. Although GGT is expressed in brain extensively, the function of GGT in central nerves system is largely unknown so far. We have previously demonstrated that GGT promotes the basal and neuronal activity and brain‐derived neurotrophic factor (BDNF)‐induced dendritic morphogenesis of cultured hippocampal neurons and cerebellar slices. This study is to explore the function and mechanism of GGT in neuronal synaptogenesis. We found that the protein level and activity of GGT gradually increased in rat hippocampus from P7 to P28 and subcellular located at synapse of neurons. The linear density of Synapsin 1 and post‐synaptic density protein 95 increased by over‐expression of GGT β, while reduced by inhibition or down‐regulation of GGT. In addition, GGT and its known substrate Rac was activated by BDNF, which promotes synaptogenesis in cultured hippocampal neurons. Furthermore, BDNF‐induced synaptogenesis was eliminated by GGT inhibition or down‐regulation, as well as by non‐prenylated Rac1 over‐expression. Together, our data suggested that GGT mediates BDNF‐induced neuronal synaptogenesis through Rac1 activation.  相似文献   
13.
Exposure to chronic drugs of abuse has been reported to produce significant changes in postsynaptic protein profile, dendritic spine morphology and synaptic transmission. In the present study we demonstrate alterations in dendritic spine morphology in the frontal cortex and nucleus accumbens of mice following chronic morphine treatment as well as during abstinence for two months. Such alterations were accompanied with significant upregulation of the postsynaptic protein Shank1 in synaptosomal enriched fractions. mRNA levels of Shank1 was also markedly increased during morphine treatment and during withdrawal. Studies of the different postsynaptic proteins at the protein and mRNA levels showed significant alterations in the morphine treated groups compared to that of saline treated controls. Taken together, these observations suggest that Shank1 may have an important role in the regulation of spine morphology induced by chronic morphine leading to addiction.  相似文献   
14.
Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.  相似文献   
15.
The very C-terminus of c-Src is a ligand for PDZ domains. In a screen for PDZ domains that interact with c-Src, we identified one of the PDZ domains of the Ligand-of-Numb protein X1 (LNX1), a multiple PDZ domain scaffold and RING type E3 ubiquitin ligase. We demonstrate that the interaction of c-Src with LNX1 depends on the C-terminal PDZ ligand of c-Src. Furthermore, we show that c-Src phosphorylates LNX1. Moreover, c-Src itself is ubiquitinated by LNX1, suggesting an interdependent regulation of c-Src and LNX1.  相似文献   
16.
An important question in protein folding is whether the folding mechanism is sequence dependent and conserved for homologous proteins. In this work we compared the kinetic folding mechanism of five postsynaptic density protein-95, disc-large tumor suppressor protein, zonula occludens-1 (PDZ) domains, sharing similar topology but having different primary structures. Investigation of the different proteins under various experimental conditions revealed that the folding kinetics of each member of the PDZ family can be described by a model with two transition states separated by an intermediate. Moreover, the positions of the two transition states along the reaction coordinate (as given by their beta(T)-values) are fairly constant for the five PDZ domains.  相似文献   
17.
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism. This reprogramming activity was postulated to be dependent on its differential phosphorylation patterns. Here, we show that NHERF1 phosphorylation on S279/S301 dictates several tumor phenotypes such as in vivo invasion, NHE1-mediated matrix digestion, growth and vasculogenic mimicry. Remarkably, injecting mice with cells having differential NHERF1 expression and phosphorylation drove a shift from the predominantly lung colonization (WT NHERF1) to predominately bone colonization (double S279A/S301A mutant), indicating that NHERF1 phosphorylation also acts as a signaling switch in metastatic organotropism.  相似文献   
18.
We determined the expression and subcellular localization of nuclear protein NP95 during the cell cycle in mouse 3T3 cells. The levels of NP95 mRNA and protein were extremely low in quiescent cells; however, stimulation with 10% serum increased their expressions in a time course similar to that of the late growth-regulated gene proliferating cell nuclear antigen (PCNA). Subnuclear location of NP95 dynamically changed during the cell cycle. Double immunostaining for NP95 and chromatin-bound PCNA, a marker of DNA replication sites, revealed that NP95 was almost exclusively colocalized with chromatin-bound PCNA throughout the nucleus in early S phase and partly in mid-S phase. Distinct localization of the two proteins, however, became evident in mid-S phase, and thereafter, many chromatin-bound PCNA foci not carrying NP95 foci could be detected. In G2 phase, nodular NP95 foci were still identified without any chromatin-bound PCNA foci. Chromatin-bound PCNA was observed as a pre-DNA replication complex at the G1/S boundary synchronized by hydroxyurea treatment, while NP95 was detected in nucleolar regions as unique large foci. There was no significant redistribution of NP95 foci shortly after DNA damage by gamma-irradiation. Nodular NP95 foci characteristically seen in G2 phase were also detected in G2-arrested cells following gamma-irradiation. Taken together, our results indicate that NP95 is assigned to a late growth-regulated gene and suggest that NP95 does not take a direct part in DNA replication as part of the DNA synthesizing machinery, like PCNA, but is presumably involved in other DNA replication-linked nuclear events.  相似文献   
19.
Neurotransmitter receptors in vivo are linked to intracellular adaptor proteins and signalling molecules driving downstream pathways. Methods for physical isolation are essential to answer fundamental questions about the size, structure and composition of in vivo complexes and complement the widely used yeast 2-hybrid method. The N-methyl-D-aspartate receptor (NMDAR) binds postsynaptic density 95 (PSD-95) protein; both are required for synaptic plasticity and learning and participate in other important pathophysiological functions. Here we describe the development and optimization of novel methods for large-scale isolation of NMDAR--PSD-95 complexes from mouse brain including immunoaffinity, immunoprecipitation, ligand-affinity and immobilized PSD-95 binding peptides. Short PDZ binding peptides modelled on NMDAR subunits were shown to isolate NMDAR complexes. Gel filtration indicated the native NMDAR--PSD-95 complexes were 2000 kDa, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed a complexity suggesting a huge network of both structural components and signalling enzymes. These methods can be used to define the structure of the complexes at different synapses and in mice carrying gene mutations as well as new tools for drug discovery.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号