首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   13篇
  国内免费   6篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2016年   5篇
  2015年   1篇
  2014年   10篇
  2013年   20篇
  2012年   7篇
  2011年   8篇
  2010年   12篇
  2009年   10篇
  2008年   9篇
  2007年   9篇
  2006年   9篇
  2005年   11篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有220条查询结果,搜索用时 125 毫秒
31.
Biological control of mycotoxin in cereals, fruits and vegetables have emerged as a promising method. In a previous study, Yarrowia lipolytica Y‐2 isolated by our research team showed biocontrol effect on the post‐harvest decay of grapes and ochratoxin A (OTA) elimination in polytoma medium. The aim of this study was to elucidate the possible mechanisms of OTA elimination by Y. lipolytica Y‐2. The results indicated that OTA elimination by Y. lipolytica Y‐2 was attributed to the degradation action of intracellular enzymes but not extracellular enzymes. A degradation product was identified as ochratoxin alpha (OTα) by liquid chromatography‐tandem mass spectrometry. The intracellular enzymes precipitated with 65% saturation of ammonium sulphate degrade OTA the most quickly and 97.2% OTA was degraded within 4 h. Analysis of this fraction showed that two proteins of carboxypeptidase were expressed in Y. lipolytica Y‐2 but not in Y. lipolytica Polh without the ability to degrade OTA. The results of the protein identification combined with product identification indicated that OTA was degraded to OTα by Y. lipolytica Y‐2 through the hydrolysis activity of carboxypeptidases. Additionally, many proteins of Y. lipolytica Y‐2 involved in stress response and reactive O2 species elimination also played essential role in OTA degradation.  相似文献   
32.
There are two types of carboxypeptidases present in human blood, carboxypeptidase N (CPN) and arginine carboxypeptidase (CPR). CPR is generated during coagulation from a precursor (proCPR) which can be converted to the active form by trypsin in vitro. Since it is difficult to distinguish the two types of carboxypeptidases in human blood by the measurement of enzyme activity, we established a quantitative sandwich ELISA by which CPR can be quantitated. The amount of CPR in plasma, fresh serum and heated serum were essentially the same. Therefore the ELISA assay does not distinguish proCPR, activated CPR and inactivated CPR. With the ELISA method, CPR was quantitated in plasma from fifty patients with rheumatoid arthritis and eleven patients with severe hepatitis as well as healthy individuals. The amount of CPR in plasma obtained from patients with rheumatoid arthritis was not found to be lower than that of normal subjects. Furthermore, the patients who suffered severe hepatitis and had very low levels of CPR-total were fatal. This suggests that a decrease of CPR level might be a good indication of a patient's prognosis to death by hepatitis.  相似文献   
33.
A novel class of major histocompatibility complex class I (MHC-I) ligands containing an N-hydroxy-amide bond was designed on the basis of the natural epitope SIINFEKL, and synthesized on solid phase. The capacity of these compounds to bind to the MHC-I molecule H-2Kb and to induce T cell responses was analysed in comparison with the corresponding glycine containing variant of SIINFEKL. Binding to the MHC molecule was diminished by the N-hydroxy group at positions 2 and 3 of the oligomer and improved in the case of positions 4, 5, 6 and 7. No change was seen for position 1. The efficacy of T cell stimulation was strongly reduced by the modification of all positions except for position 1. A complete loss of activity was found for the N-hydroxy variant in positions 4 and 6. N-Hydroxy amide-containing peptides displayed an enhanced stability to enzymatic degradation. This new class of MHC ligand can become instrumental as immunomodulatory reagent in various disease situations. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
34.
Most aerial parts of the plant body are products of the continuous activity of the shoot apical meristem (SAM). Leaves are the major component of the aerial plant body, and their temporal and spatial distribution mainly determines shoot architecture. Here we report the identification of the rice gene PLASTOCHRON3 ( PLA3 )/ GOLIATH ( GO ) that regulates various developmental processes including the rate of leaf initiation (the plastochron). PLA3 / GO encodes a glutamate carboxypeptidase, which is thought to catabolize small acidic peptides and produce small signaling molecules. pla3 exhibits similar phenotypes to pla1 and pla2 – a shortened plastochron, precocious leaf maturation and rachis branch-to-shoot conversion in the reproductive phase. However, in contrast to pla1 and pla2 , pla3 showed pleiotropic phenotypes including enlarged embryo, seed vivipary, defects in SAM maintenance and aberrant leaf morphology. Consistent with these pleiotropic phenotypes, PLA3 is expressed in the whole plant body, and is involved in plant hormone homeostasis. Double mutant analysis revealed that PLA1 , PLA2 and PLA3 are regulated independently but function redundantly. Our results suggest that PLA3 modulates various signaling pathways associated with a number of developmental processes.  相似文献   
35.
Escherichia coli FucU (Fucose Unknown) is a dual fucose mutarotase and ribose pyranase, which shares 44% sequence identity with its human counterpart. Herein, we report the structures of E. coli FucU and mouse FucU bound to l-fucose and delineate the catalytic mechanisms underlying the interconversion between stereoisomers of fucose and ribose. E. coli FucU forms a decameric toroid with each active site formed by two adjacent subunits. While one subunit provides most of the fucose-interacting residues including a catalytic tyrosine residue, the other subunit provides a catalytic His-Asp dyad. This active-site feature is critical not only for the mutarotase activity toward l-fucose but also for the pyranase activity toward d-ribose. Structural and biochemical analyses pointed that mouse FucU assembles into four different oligomeric forms, among which the smallest homodimeric form is most abundant and would be the predominant species under physiological conditions. This homodimer has two fucose-binding sites that are devoid of the His-Asp dyad and catalytically inactive, indicating that the mutarotase and the pyranase activities appear dispensable in vertebrates. The defective assembly of the mouse FucU homodimer into the decameric form is due to an insertion of two residues at the N-terminal extreme, which is a common aspect of all the known vertebrate FucU proteins. Therefore, vertebrate FucU appears to serve for as yet unknown function through the quaternary structural alteration.  相似文献   
36.
In eukaryotes, autophagy is a conserved protein degradation system that degrades cytoplasmic components by encompassing them with double-membrane structures, called autophagosomes, and delivering them to the lytic compartments of vacuoles/lysosomes. Certain Atg proteins are known to be involved in autophagy, yet the identity and function of lipid molecules involved remain largely unknown. We investigated the involvement of sphingolipids in autophagy using Saccharomyces cerevisiae. Inhibiting synthesis of the simplest complex sphingolipid, inositol phosphorylceramide (IPC), resulted in reduced autophagic activities. Similar results were obtained using myriocin, an inhibitor of the first step in sphingolipid synthesis. Our results indicate that sphingolipids, especially IPC, are required for autophagy. Inhibition of sphingolipid synthesis had no effect on formation of Atg12-Atg5 or Atg8-phosphatidylethanolamine conjugates, on maturation of vacuolar proteases, or on formation of the pre-autophagosomal structure (PAS). These results suggest that sphingolipids are not involved in the cellular signaling that leads to formation of the PAS, but may be involved in the process of autophagosome formation.  相似文献   
37.
Bradykinin-related peptides, kinins, ubiquitously occur in the nervous system and together with other pro-inflammatory mediators contribute to pathological states of that tissue such as edema and chronic pain. In the current work we characterized the kinin-forming system of neuronal cells obtained by differentiation of human neuroblastoma cell line IMR-32 with retinoic acid. These cells were shown to concentrate exogenous kinin precursors, kininogens, on the surface, release kinins from kininogens and subsequently convert kinins to their des-Arg metabolites. Significantly higher amounts of kinins and des-Arg-kinins were produced after cell stimulation with interferon-γ, a potent pro-inflammatory mediator involved in many neurological disorders. The expression of the major tissue kininogenase (the human kallikrein 1) and the major cell membrane-bound kininase (the carboxypeptidase M) also increased after cell stimulation with interferon-γ, suggesting the involvement of these enzymes in the kinin production and degradation, respectively. Interferon-γ was also able to up-regulate the expression of two known subtypes of kinin receptors. On the protein level, the changes were only observed in the expression of the des-Arg-kinin-specific type 1 receptor which functions in the propagation of the inflammatory state. Taken together, these results suggest a novel way for local kinin and des-Arg-kinin generation in the nervous tissue during pathological states accompanied by interferon-γ release.  相似文献   
38.
The adaptor protein 1A complex (AP‐1A) transports cargo between the trans‐Golgi network (TGN) and endosomes. In professional secretory cells, AP‐1A also retrieves material from immature secretory granules (SGs). The role of AP‐1A in SG biogenesis was explored using AtT‐20 corticotrope tumor cells expressing reduced levels of the AP‐1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non‐condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue‐stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α‐amidating monooxygenase‐1 (PAM‐1), integral membrane enzymes that enter immature SGs. The non‐condensing SGs contained POMC products and PAM‐1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM‐1 into PHM was unaltered, but PHM basal secretion was increased in sh‐μ1A PAM‐1 cells. Despite lacking a canonical AP‐1A binding motif, yeast two‐hybrid studies demonstrated an interaction between the PAM‐1 cytosolic domain and AP‐1A. Coimmunoprecipitation experiments with PAM‐1 mutants revealed an influence of the luminal domains of PAM‐1 on this interaction. Thus, AP‐1A is crucial for normal SG biogenesis, function and composition.   相似文献   
39.
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot‐and‐mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound‐ and pathogen‐inducible mpi promoter. The mpi‐pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi‐pci rice, compared with larvae fed on wild‐type plants, was observed. Expression of the mpi‐pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi‐pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi‐pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi‐pci fusion gene for dual resistance against insects and pathogens in rice plants.  相似文献   
40.
Abstract

Belactins A and B, new inhibitors of serine carboxypeptidase were discovered in the fermentation broth of Saccharopolyspora sp. MK19–42F6. The structures of belactins A and B were determined to be 4–[3–[(2-amino-5-chlorobenzoyl)amino]-l,l-dimethyl-2-oxobutylJ-3-methyl-2-oxetanone and 4–[3–[[2–(β-glucopyranosylamino)-5-chlorobenzoyl]amino]-l,l-dimethyl-2-oxobutyl]-3-methyl-2-oxetanone respectively by various spectral analyses. Belactins A and B do not inhibit esterase or lipase at 100 μg/ml but have more specific inhibitory activities towards carboxypeptidase Y (CP-Y) compared with other β-lactone-containing inhibitors, such as ebelactones A, B and esterastin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号