全文获取类型
收费全文 | 861篇 |
免费 | 21篇 |
国内免费 | 6篇 |
专业分类
888篇 |
出版年
2023年 | 4篇 |
2022年 | 8篇 |
2021年 | 24篇 |
2020年 | 17篇 |
2019年 | 14篇 |
2018年 | 26篇 |
2017年 | 6篇 |
2016年 | 8篇 |
2015年 | 33篇 |
2014年 | 83篇 |
2013年 | 64篇 |
2012年 | 65篇 |
2011年 | 106篇 |
2010年 | 60篇 |
2009年 | 37篇 |
2008年 | 47篇 |
2007年 | 50篇 |
2006年 | 59篇 |
2005年 | 43篇 |
2004年 | 28篇 |
2003年 | 24篇 |
2002年 | 20篇 |
2001年 | 13篇 |
2000年 | 7篇 |
1999年 | 6篇 |
1998年 | 10篇 |
1997年 | 3篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 5篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1984年 | 1篇 |
排序方式: 共有888条查询结果,搜索用时 0 毫秒
91.
Localisation of Protein Kinase A (PKA) by A-Kinase Anchoring Proteins (AKAPs) is known to coordinate localised signalling complexes that target cAMP-mediated signalling to specific cellular sub-domains. The cAMP PKA signalling pathway is implicated in both meiotic arrest and meiotic resumption, thus spatio-temporal changes in PKA localisation during development may determine the oocytes response to changes in cAMP. In this study we aim to establish whether changes in PKA localisation occur during oocyte and early embryo development.Using fluorescently-labelled PKA constructs we show that in meiotically incompetent oocytes PKA is distributed throughout the cytoplasm and shows no punctuate localisation. As meiotic competence is acquired, PKA associates with mitochondria. Immature germinal vesicle (GV) stage oocytes show an aggregation of PKA around the GV and PKA remains co-localised with mitochondria throughout oocyte maturation. After fertilisation, the punctuate, mitochondrial distribution was lost, such that by the 2-cell stage there was no evidence of PKA localisation. RT-PCR and Western blotting revealed two candidate AKAPs that are known to be targeted to mitochondria, AKAP1 and D-AKAP2. In summary these data show a dynamic regulation of PKA localisation during oocyte and early embryo development. 相似文献
92.
J. A. MacDonald K. B. Storey 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1998,168(7):513-525
Arousal from hibernation requires thermogenesis in brown adipose tissue, a process that is stimulated by β-adrenergic signals,
leading to a rise in intracellular 3′,5′-cyclic adenosine monophosphate AMP (cAMP) and activating cAMP-dependent protein kinase
A (PKA) to phosphorylate a suite of target proteins and activate lipolysis and uncoupled respiration. To determine whether
specific adaptations (perhaps temperature-dependent) facilitate PKA kinetic properties or protein-phosphorylating ability,
the catalytic subunit of PKA (PKAc) from interscapular brown adipose of the ground squirrel Spermophilus richardsonii, was purified (final specific activity = 279 nmol phosphate transferred per min per mg protein) and characterized. Physical
properties of PKAc included a molecular weight of 41 kDa and an isoelectric point of 7.8 ± 0.08. A change in assay temperature
from a euthermic value (37 °C) to one typical of hibernating body temperature (5 °C) had numerous significant effects on ground
squirrel PKAc including: (a) pH optimum rose from 6.8 at 37 °C to 8.7 at 5 °C, (b) Km values at 37 °C for Mg.ATP (49.2±3.4 M) and for two phosphate acceptors, Kemptide (50.0±5.5 M) and Histone IIA (0.41 ± 0.05 mg/ml)
decreased by 53%, 80% and 51%, respectively, at 5 °C, and (c) inhibition by KCl, NaCl and NH4Cl was reduced. However, temperature change had little or no effect on Km values of rabbit PKAc, suggesting a specific positive thermal modulation of the hibernator enzyme. Arrhenius plots also differed
for the two enzymes; ground squirrel PKAc showed a break in the Arrhenius relationship at 9 °C and activation energies that
were 29.1 ± 1.0 kJ/mol for temperatures >9 °C and 2.3-fold higher at 68.1 ± 2.1 kJ/mol for temperatures <9 °C, whereas the
rabbit enzyme showed a breakpoint at 17 °C with a 13-fold higher activation energy over the lower temperature range. However,
fluorescence analysis of PKAc in the absence of substrates, showed a linear change in fluorescence intensity and wavelength
of maximal fluorescence over the entire temperature range; this suggested that the protein conformational change indicated
by the break in the Arrhenius plot was substrate-related. Temperature change also affected the Hill coefficient for cAMP dissociation
of the ground squirrel PKA holoenzyme which rose from 1.12 ± 0.18 at 37 °C to 2.19 ± 0.07 at 5 °C, making the release of catalytic
subunits at low temperature much more responsive to small changes in cAMP levels. Analysis of PKAc function via in vitro incubations
of extracts of ground squirrel brown adipose with 32P-ATP + cAMP in the presence versus absence of a PKA inhibitor, also revealed major differences in the patterns of phosphoproteins,
both between euthermic and hibernating animals as well as between 37 and 5 °C incubation temperatures; this suggests that
there are both different targets of PKAc phosphorylation in the hibernating animal and that temperature affects the capacity
of PKAc to phosphorylate different targets. Both of these observations, plus the species-specific and temperature-dependent
changes in ground squirrel PKAc kinetic properties, suggest differential control of the enzyme in vivo at euthermic versus
hibernating body temperatures in a manner that would facilitate a rapid and large activation of the enzyme during arousal
from torpor.
Accepted: 10 July 1998 相似文献
93.
Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. 相似文献
94.
A central theme in nervous system function is equilibrium: synaptic strengths wax and wane, neuronal firing rates adjust up and down, and neural circuits balance excitation with inhibition. This push/pull regulatory theme carries through to the molecular level at excitatory synapses, where protein function is controlled through phosphorylation and dephosphorylation by kinases and phosphatases. However, these opposing enzymatic activities are only part of the equation as scaffolding interactions and assembly of multi-protein complexes are further required for efficient, localized synaptic signaling. This review will focus on coordination of postsynaptic serine/threonine kinase and phosphatase signaling by scaffold proteins during synaptic plasticity. 相似文献
95.
cAMP‐dependent, PKA‐independent effects on cell proliferation are mediated by cAMP binding to EPAC and activation of Rap signaling. In this report, we employed the analogue 8‐CPT‐2‐O‐Me‐cAMP to study binding to EPAC and subsequent activation of B‐Raf/ERK and mTOR signaling in human cancer cells. This compound significantly stimulated DNA synthesis, protein synthesis, and cellular proliferation of human 1‐LN prostate cancer cells. By study of phosphorylation‐dependent activation, we demonstrate that EPAC‐mediated cellular effects require activation of the B‐Raf/ERK and mTOR signaling cascades. RNAi directed against EPAC gene expression as well as inhibitors of ERK, PI 3‐kinase, and mTOR were employed to further demonstrate the role of these pathways in regulating prostate cancer cell proliferation. These studies were then extended to several other human prostate cancer cell lines and melanoma cells with comparable results. We conclude that B‐Raf/ERK and mTOR signaling play an essential role in cAMP‐dependent, but PKA‐independent, proliferation of cancer cells. J. Cell. Biochem. 108: 998–1011, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
96.
97.
Mandy Diskar Hans-Michael Zenn Alexandra Kaupisch Melanie Kaufholz Stefanie Brockmeyer Daniel Sohmen Marco Berrera Manuela Zaccolo Michael Boshart Friedrich W. Herberg Anke Prinz 《The Journal of biological chemistry》2010,285(46):35910-35918
cAMP-dependent protein kinases are reversibly complexed with any of the four isoforms of regulatory (R) subunits, which contain either a substrate or a pseudosubstrate autoinhibitory domain. The human protein kinase X (PrKX) is an exemption as it is inhibited only by pseudosubstrate inhibitors, i.e. RIα or RIβ but not by substrate inhibitors RIIα or RIIβ. Detailed examination of the capacity of five PrKX-like kinases ranging from human to protozoa (Trypanosoma brucei) to form holoenzymes with human R subunits in living cells shows that this preference for pseudosubstrate inhibitors is evolutionarily conserved. To elucidate the molecular basis of this inhibitory pattern, we applied bioluminescence resonance energy transfer and surface plasmon resonance in combination with site-directed mutagenesis. We observed that the conserved αH-αI loop residue Arg-283 in PrKX is crucial for its RI over RII preference, as a R283L mutant was able to form a holoenzyme complex with wild type RII subunits. Changing the corresponding αH-αI loop residue in PKA Cα (L277R), significantly destabilized holoenzyme complexes in vitro, as cAMP-mediated holoenzyme activation was facilitated by a factor of 2–4, and lead to a decreased affinity of the mutant C subunit for R subunits, significantly affecting RII containing holoenzymes. 相似文献
98.
Dissecting interdomain communication within cAPK regulatory subunit type IIbeta using enhanced amide hydrogen/deuterium exchange mass spectrometry (DXMS) 下载免费PDF全文
Zawadzki KM Hamuro Y Kim JS Garrod S Stranz DD Taylor SS Woods VL 《Protein science : a publication of the Protein Society》2003,12(9):1980-1990
cAMP-dependent protein kinase (cAPK) is a heterotetramer containing a regulatory (R) subunit dimer bound to two catalytic (C) subunits and is involved in numerous cell signaling pathways. The C-subunit is activated allosterically when two cAMP molecules bind sequentially to the cAMP-binding domains, designated A and B (cAB-A and cAB-B, respectively). Each cAMP-binding domain contains a conserved Arg residue that is critical for high-affinity cAMP binding. Replacement of this Arg with Lys affects cAMP affinity, the structural integrity of the cAMP-binding domains, and cAPK activation. To better understand the local and long-range effects that the Arg-to-Lys mutation has on the dynamic properties of the R-subunit, the amide hydrogen/deuterium exchange in the RIIbeta subunit was probed by electrospray mass spectrometry. Mutant proteins containing the Arg-to-Lys substitution in either cAMP-binding domain were deuterated for various times and then, prior to mass spectrometry analysis, subjected to pepsin digestion to localize the deuterium incorporation. Mutation of this Arg in cAB-A (Arg230) causes an increase in amide hydrogen exchange throughout the mutated domain that is beyond the modest and localized effects of cAMP removal and is indicative of the importance of this Arg in domain organization. Mutation of Arg359 (cAB-B) leads to increased exchange in the adjacent cAB-A domain, particularly in the cAB-A domain C-helix that lies on top of the cAB-B domain and is believed to be functionally linked to the cAB-B domain. This interdomain communication appears to be a unidirectional pathway, as mutation of Arg230 in cAB-A does not effect dynamics of the cAB-B domain. 相似文献
99.
In Vitro Stimulation of Protein Kinase C by Melatonin 总被引:2,自引:0,他引:2
Antón-Tay Fernando Ramírez Gerardo Martínez Isabel Benítez-King Gloria 《Neurochemical research》1998,23(5):601-606
It has been shown that melatonin through binding to calmodulin acts both in vitro and in vivo as a potent calmodulin antagonist. It is known that calmodulin antagonists both bind to the hydrophobic domain of Ca2+ activated calmodulin, and inhibit protein kinase C activity. In this work we explored the effects of melatonin on Ca2+ dependent protein kinase C activity in vitro using both a pure commercial rat brain protein kinase C, and a partially purified enzyme from MDCK and N1E-115 cell homogenates. The results showed that melatonin directly activated protein kinase C with a half stimulatory concentration of 1 nM. In addition the hormone augmented by 30% the phorbol ester stimulated protein kinase C activity and increased [3H] PDBu binding to the kinase. In contrast, calmodulin antagonists (500 M) and protein kinase C inhibitors (100 M) abolished the enzyme activity. Melatonin analogs tested were ineffective in increasing either protein kinase C activity or [3H] PDBu binding. Moreover, the hormone stimulated protein kinase C autophosphorylation directly and in the presence of phorbol ester and phosphatidylserine. The results show that besides the melatonin binding to calmodulin, the hormone also interacts with protein kinase C only in the presence of Ca2+. They also suggest that the melatonin mechanism of action may involve interactions with other intracellular hydrophobic and Ca2+ dependent proteins. 相似文献
100.
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2′-O-methyladenosine 3′,5′-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role. 相似文献