首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   21篇
  国内免费   6篇
  888篇
  2023年   4篇
  2022年   8篇
  2021年   24篇
  2020年   17篇
  2019年   14篇
  2018年   26篇
  2017年   6篇
  2016年   8篇
  2015年   33篇
  2014年   83篇
  2013年   64篇
  2012年   65篇
  2011年   106篇
  2010年   60篇
  2009年   37篇
  2008年   47篇
  2007年   50篇
  2006年   59篇
  2005年   43篇
  2004年   28篇
  2003年   24篇
  2002年   20篇
  2001年   13篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1984年   1篇
排序方式: 共有888条查询结果,搜索用时 15 毫秒
881.
《Cell metabolism》2021,33(11):2247-2259.e6
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   
882.
883.
Human head and neck squamous cell carcinoma (HNSCC) cultures were established from cancers of two patients. These cells were used to study if phosphorylation reactions by protein kinase A (PKA) and dephosphorylation reactions by protein phosphatases-1 and -2A (PP-1/2A) regulate tumor motility and adhesion to extracellular matrix components, and if this might be associated with cytoskeletal reorganization. Both cultures were motile and adherent to collagen I, fibronectin, vitronectin and laminin. Motility and adhesiveness was dependent on production of prostaglandin E2 PGE2 and on PKA activation. Blocking PP-1/2A activity with okadaic acid resulted in a PKA-dependent increase in m otility and, in some instances, adhesiveness by the HNSCC cells. The okadaic acid-induced increase in motility and adhesiveness coincided with a reduction in filamentous actin. These data suggest PKA and PP-1/2A have opposing effects in regulating the motility, adherence, and actin polymerization.  相似文献   
884.
《Cell metabolism》2021,33(10):2021-2039.e8
  1. Download : Download high-res image (206KB)
  2. Download : Download full-size image
  相似文献   
885.
Phosphorylation is considered as a common post-translational modification implicated in the control of various key enzymes. In somatic and germinal cells, important regulators of the cell cycle are controlled by their phosphorylation status, and some act as kinases or phosphatases themselves. Bovine oocytes are blocked in the germinal vesicle (GV) stage until either an LH surge occurs or until oocytes are released from the inhibitory influence of the follicle. Meiotic resumption in vitro is therefore an excellent model for the study of phosphorylation events that occur in the G2/M transition, a control point of the cellular cycle. To better understand this transition, we have modulated, either directly or indirectly, kinases using known effectors (epidermal growth factor, EGF; isobutyl-methylxanthine-forskolin, Bx-Fk; 6-dimethylaminopurine, 6-DMAP) or phosphatases (okadaic acid, OA) or cycloheximide, which is known to inhibit maturation through protein synthesis suppression. With this procedure, influence on meiotic resumption and phosphoprotein patterns was verified. Both EGF and OA accelerated nuclear maturation after 9 hr of culture. Only 23% (n = 140) and 9% (n = 111) of oocytes were still at GV stage with EGF and OA, respectively, compared to 41% (n = 105) of control oocytes. The different treatments changed the protein patterns in oocytes. In cumulus cells, the patterns were especially modified by the OA treatment. Characteristic changes that occur in germ cells were also identified. Nuclear maturation was inhibited by modulators of kinase (6-DMAP, GV = 74%, n = 126; cAMP dependent protein kinase (PKA) stimulators, Bx-Fk, GV = 71%, n = 129) likewise, phosphoprotein patterns were affected, especially in oocytes. The cycloheximide treatment was able to maintain nearly all oocytes in GV after 9 hr of culture (GV = 92%, n = 131). This analysis allowed the identification of substrates for the different effectors used in this study and also helped in determining the levels of phosphorylation required for nuclear maturation. © 1995 wiley-Liss, Inc.  相似文献   
886.
887.
《Cellular signalling》1998,10(10):713-719
The present study examines the involvement of cAMP-dependent protein kinase (PKA) in the dimorphic transition of Candida albicans by assessing the in vivo effect of two permeable PKA inhibitors on N-acetyl-d-glucosamine (GlcNAc)- and serum-induced differentiation. The permeable myristoylated derivative of the heat-stable PKA inhibitor (MyrPKI), which inhibited C. albicans PKA in vitro, caused a concentration-dependent inhibition of germ-tube formation in cultures induced to germinate by GlcNAc; germination halted irrespective of the time of addition of the inhibitor. MyrPKI also blocked dibutyryl-cAMP (dbcAMP)- and glucagon-stimulated germination but did not affect serum-induced germination. H-89, another highly specific PKA inhibitor, displayed the same effect on germination. Neither MyrPKI nor H-89 had any effect on budding of yeast cells. In conclusion, our results indicate that cAMP-mediated activation of PKA plays a pivotal role in the biochemical mechanism underlying morphogenesis.  相似文献   
888.
Studies were conducted to determine whether β-adrenergic cell signalling is altered in submandibular salivary glands (SMSG) is essential fatty acid (EFA) deficiency. Three groups of rats were fed diets which were deficient in EFA (EFAD), marginally deficient in EFA (MEFAD) or contained sufficient amount of EFA (Control). Rats were killed after 20 wk on diets, SMSG were dissected out and cyclic AMP-dependent protein kinase (PKA) activity was measured. The specific enzyme activities were higher in the homogenates and supernatant fractions of the gland from EFAD and MEFAD rats compared with the controls. The relative levels of guanine nucleotide-binding regulatory proteins (Gs and Gi) were also measured in the SMSG membranes of rats fed the 3 diets. The levels of Gs were significantly higher in the EFAD and MEFAD groups than in the controls. No significant differences were observed in the secretion of trichloroacetic acid-phosphotungstic acid (TCA-PTA) precipitable glycoproteins from the SMSG slices among the 3 dietary groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号