首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   10篇
  国内免费   6篇
  266篇
  2023年   4篇
  2022年   2篇
  2021年   10篇
  2020年   3篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   2篇
  2015年   7篇
  2014年   25篇
  2013年   17篇
  2012年   16篇
  2011年   23篇
  2010年   26篇
  2009年   11篇
  2008年   7篇
  2007年   18篇
  2006年   16篇
  2005年   11篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1985年   2篇
  1984年   7篇
  1983年   1篇
排序方式: 共有266条查询结果,搜索用时 0 毫秒
11.
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin.  相似文献   
12.
【目的】本研究旨在对前期鉴定到的nce-miR-34537进行表达和序列验证,预测nce-miR-34537的靶基因并明确其分子特性,进而检测nce-miR-34537及其靶基因在东方蜜蜂微孢子虫(Nosema ceranae)侵染意大利蜜蜂(Apis mellifera ligustica)工蜂过程的表达谱,为进一步探究nce-miR-34537调控东方蜜蜂微孢子虫侵染的功能和作用机制提供基础。【方法】通过Stem-loop-RT-PCR和Sanger测序验证nce-miR-34537的表达和序列。通过生物信息学软件预测nce-miR-34537的靶基因PIP5KI(I型磷脂酰肌醇4-磷酸-5-激酶基因)的理化性质等分子特性和保守基序,并构建基于氨基酸序列的系统进化树。采用RT-qPCR检测nce-miR-34537及其靶基因的表达谱。【结果】nce-miR-34537在东方蜜蜂微孢子虫孢子中真实存在和表达。nce-miR-34537共靶向PIP5KI等151个基因。PIP5KI蛋白的分子式为C882H1 364N226  相似文献   
13.
14.
Aquaporins play a significant role in plant water relations.To further understand the aquaporin function in plants underwater stress,the expression of a subgroup of aquaporins,plasma membrane intrinsic proteins(PIPs),was studied at boththe protein and mRNA level in upland rice(Oryza sativa L.cv.Zhonghan 3)and lowland rice(Oryza sativa L.cv.Xiushui63)when they were water stressed by treatment with 20% polyethylene glycol(PEG).Plants responded differently to20% PEG treatment.Leaf water content of upland rice leaves was reduced rapidly.PIP protein level increased markedlyin roots of both types,but only in leaves of upland rice after 10h of PEG treatment.At the mRNA level,OsPIP1;2,Os-PIP1;3,OsPIP2;1 and OsPIP2;5 in roots as well as OsPIP1;2 and OsPIP1;3 in leaves were significantly up-regulatedin upland rice,whereas the corresponding genes remained unchanged or down-regulated in lowland rice.Meanwhile,weobserved a significant increase in the endogenous abscisic acid(ABA)level in upland rice but not in lowland rice underwater deficit.Treatment with 60μM ABA enhanced the expression of OsPIP1;2,OsPIP2;5 and OsPIP2;6 in roots andOsPIP1;2,OsPIP2;4 and OsPIP2;6 in leaves of upland rice.The responsiveness of PIP genes to water stress and ABAwere different,implying that the regulation of PIP genes involves both ABA-dependent and ABA-independent signalingpathways during water deficit.  相似文献   
15.
There are conflicting data in the literature as to whether or not the Ca2+ activation of phospholipase A2 is mediated by the calcium binding protein calmodulin. In the present study the membrane-bound phospholipase A2 enzymes in rat and human platelets were shown to be absolutely Ca2+ dependent but were not stimulated by the addition of calmodulin. A partially purified phospholipase A2 from rat platelet membrane, which contained little endogenous calmodulin, also was not stimulated by calmodulin addition. Both isolated and membrane-bound phospholipase A2 were inhibited by the non-specific calmodulin antagonist trifluoperazine but the inhibition was not overcome by adding calmodulin. There was thus no evidence from these studies that phospholipase A2 is calmodulin regulated.  相似文献   
16.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   
17.
Isolated frog (RanaPipiens) retinas were labeled in the dark with either [32P]PO4-orthophosphate or myo-[2-3H]inositol for 2.5–4 hrs. After washing the retinas with cold buffer, they were exposed to brief flashes of light (5 secs or 15 secs) and their rod outer segments isolated. Upon separation of labeled phospholipids, a specific decrease in label in phosphatidylinositol 4,5-bisphosphate was observed, whereas there was no significant effect on the labeling of phosphatidylinositol 4-phosphate, phosphatidylinositol, or phosphatidic acid. These results are indicative of a light-activated phosphatidylinositol 4,5-bisphosphate-specific phospholipase C in frog rod outer segments.  相似文献   
18.
19.
The type I phosphatidylinositol 4-phosphate 5-kinases (PI4P5K) phosphorylate phosphatidylinositol 4-phosphate [PI(4)P] to produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PI(4,5)P2 has been implicated in signal transduction, receptor mediated endocytosis, vesicle trafficking, cytoskeletal structure, and membrane ruffling. However, the specific type I enzymes associated with the production of PI(4,5)P2 for the specific cellular processes have not been rigorously defined. Murine PI4P5K type Ibeta (mPIP5K-Ibeta) was implicated in receptor mediated endocytosis through the isolation of a truncated and inactive form of the enzyme that blocked the ligand-dependent downregulation of the colony-stimulating factor-1 receptor. The present study shows that enforced expression of mPIP5K-Ibeta in 293T cells resulted in the accumulation of large vesicles that were linked to an endosomal pathway. Similar results were obtained after the expression of the PI(4,5)P2-binding pleckstrin homology (PH) domain of phospholipase-Cdelta (PLC-delta). Analysis of the conserved domains of mPIP5K-Ibeta led to the identification of dimerization domains in the N- and C-terminal regions. Enforced expression of the individual dimerization domains interfered with the proper subcellular localization of mPIP5K-Ibeta and the PLC-delta-PH domain and blocked the accumulation of the endocytic vesicles induced by these proteins. In addition to regulating early steps in endocytosis, these results suggest that mPIP5K-Ibeta acts through PI(4,5)P2 to regulate endosomal trafficking and/or fusion.  相似文献   
20.
趋化性是中性粒细胞参与机体对抗病原体的一个基本的细胞反应。中性粒细胞的趋化过程中涉及一系列信号通路来调节其运动性和极性。信号分子磷酸酰肌醇三磷酸及其参与的信号通路在中性粒细胞趋化过程中起着重要的作用,其自身的生成也受到一系列复杂因素的调节。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号