首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42853篇
  免费   17283篇
  国内免费   6篇
  2024年   1篇
  2023年   8篇
  2022年   24篇
  2021年   443篇
  2020年   2795篇
  2019年   4314篇
  2018年   4590篇
  2017年   4571篇
  2016年   4270篇
  2015年   4137篇
  2014年   4039篇
  2013年   4405篇
  2012年   3812篇
  2011年   3966篇
  2010年   3458篇
  2009年   2281篇
  2008年   2444篇
  2007年   1862篇
  2006年   1865篇
  2005年   1556篇
  2004年   1235篇
  2003年   1341篇
  2002年   1144篇
  2001年   854篇
  2000年   413篇
  1999年   248篇
  1998年   1篇
  1997年   10篇
  1996年   9篇
  1995年   11篇
  1994年   7篇
  1993年   14篇
  1992年   13篇
  1991年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
142.
Host selection can be a strategy to simplify downstream processing for protein recovery. Advancing capabilities for using plants as hosts offers new host opportunities that have received only limited attention from a downstream processing perspective. Here, we investigated the potential of using a polycationic precipitating agent (polyethylenimine; PEI) to precipitate an acidic model protein (beta-glucuronidase; GUS) from aqueous plant extracts. To assess the potential of host selection to enhance the ease of recovery, the same procedure was applied to oilseed extracts of canola, corn (germ), and soy. For comparison, PEI precipitation of GUS was also evaluated from a crude bacterial fermentation broth. Two versions of the target protein were investigated--the wild-type enzyme (WTGUS) and a genetically engineered version containing 10 additional aspartates on each of the enzyme's four homologous subunits (GUSD10). It was found that canola was the most compatible expression host for use with this purification technique. GUS was completely precipitated from canola with the lowest dosage of PEI (30 mg PEI/g total protein), and over 80% of the initial WTGUS activity was recovered with 18-fold purification. Precipitation from soy gave yields over 90% for WTGUS but only 1.3-fold enrichment. Corn, although requiring the most PEI relative to total protein to precipitate (210 mg PEI/g total protein for 100% precipitation), gave intermediate results, with 81% recovery of WTGUS activity and a purification factor of 2.6. The addition of aspartate residues to the target protein did not enhance the selectivity of PEI precipitation in any of the systems tested. In fact, the additional charge reduced the ability to recover GUSD10 from the precipitate, resulting in lower yields and enrichment ratios compared to WTGUS. Compared to the bacterial host, plant systems provided lower polymer dosage requirements, higher yields of recoverable activity and greater purification factors.  相似文献   
143.
The human body is one still frame in a very long evolutionary movie. Anthropologists focus on the last few scenes, whereas geneticists try to trace the screenplay back as far as possible. Despite their divergent time scales (millions versus billions of years), both disciplines share a reliance on a third field of study whose scope spans only a matter of days to months, depending on the organism. Embryology is crucial for understanding both the pliability of anatomy and the modularity of gene circuitry. The relevance of human embryology to anthropology is obvious. What is not so obvious is the notion that equally useful clues about human anatomy can be gleaned by studying the development of the fruit fly, an animal as different from us structurally as it is distant from us evolutionarily. The underlying kinship between ourselves and flies has only become apparent recently, thanks to revelations from the nascent field of evolutionary developmental biology, or evo‐devo. All bilaterally symmetric animals, it turns out, share a common matrix of body axes, a common lexicon of intercellular signals, and a common arsenal of genetic gadgetry that evolution has tweaked in different ways in different lineages to produce a dazzling spectrum of shapes and patterns. Anthropologists can exploit this deep commonality to search our genome more profitably for the mutations that steered us so far astray from our fellow apes.  相似文献   
144.
Although soil invertebrates play a decisive role in maintaining ecosystem functioning, little is known about their structural composition in Alpine soils and how their abundances are affected by the currently ongoing land‐use changes. In this study, we re‐assessed the soil macrofauna community structure of managed and abandoned Alpine pastureland, which has already been evaluated 14 years earlier. Our results confirm clear shifts in the community composition after abandonment, in that (1) Chilopoda and Diplopoda were recorded almost exclusively on the abandoned sites, (2) Coleoptera larvae and Diptera larvae were more abundant on the abandoned than on the managed sites, whereas (3) Lumbricidae dominated on the managed sites. By revisiting managed and abandoned sites, we infer community patterns caused by abandonment such as changes in the epigeic earthworm community structure, and we discuss seasonal and sampling effects. Our case study improves the still limited understanding of spatio‐temporal biodiversity patterns of Alpine soil communities.  相似文献   
145.
The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single‐step reaction involving a solvent molecule, a general base/acid, and a mono‐ or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal‐binding motif (HEXXH), which includes two metal‐binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ~130–270‐residue catalytic domains, which are usually preceded by N‐terminal pro‐segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C‐terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N‐terminal subdomain spanning a five‐stranded β‐sheet, a backing helix, and an active‐site helix. The latter contains most of the metal‐binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C‐terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met‐turn—and a C‐terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs.  相似文献   
146.
147.
148.
Existing approaches for early‐stage bladder tumor diagnosis largely depend on invasive and time‐consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real‐time tumor diagnosis can enable immediate laser‐based removal of tumors using flexible cystoscopes in the outpatient clinic. Therefore, novel diagnostic modalities are required that can provide real‐time in vivo tumor diagnosis. Raman spectroscopy provides biochemical information of tissue samples ex vivo and in vivo and without the need for complicated sample preparation and staining procedures. For the past decade there has been a rise in applications to diagnose and characterize early cancer in different organs, such as in head and neck, colon and stomach, but also different pathologies, for example, inflammation and atherosclerotic plaques. Bladder pathology has also been studied but only with little attention to aspects that can influence the diagnosis, such as tissue heterogeneity, data preprocessing and model development. The present study presents a clinical investigative study on bladder biopsies to characterize the tumor grading ex vivo, using a compact fiber probe‐based imaging Raman system, as a crucial step towards in vivo Raman endoscopy. Furthermore, this study presents an evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and the multivariate statistical analysis for discrimination between nontumor tissue, and low‐ and high‐grade tumor.  相似文献   
149.
150.
Amyloid fibrils are associated with numerous degenerative diseases. The molecular mechanism of the structural transformation of native protein to the highly ordered cross‐β structure, the key feature of amyloid fibrils, is under active investigation. Conventional biophysical methods have limited application in addressing the problem because of the heterogeneous nature of the system. In this study, we demonstrated that deep‐UV resonance Raman (DUVRR) spectroscopy in combination with circular dichroism (CD) and intrinsic tryptophan fluorescence allowed for quantitative characterization of protein structural evolution at all stages of hen egg white lysozyme fibrillation in vitro. DUVRR spectroscopy was found to be complimentary to the far‐UV CD because it is (i) more sensitive to β ‐sheet than to α ‐helix, and (ii) capable of characterizing quantitatively inhomogeneous and highly light‐scattering samples. In addition, phenylalanine, a natural DUVRR spectroscopic biomarker of protein structural rearrangements, exhibited substantial changes in the Raman cross section of the 1000‐cm–1 band at various stages of fibrillation. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号