首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8604篇
  免费   298篇
  国内免费   238篇
  9140篇
  2023年   119篇
  2022年   85篇
  2021年   151篇
  2020年   170篇
  2019年   201篇
  2018年   219篇
  2017年   143篇
  2016年   166篇
  2015年   173篇
  2014年   238篇
  2013年   589篇
  2012年   167篇
  2011年   269篇
  2010年   243篇
  2009年   296篇
  2008年   301篇
  2007年   342篇
  2006年   314篇
  2005年   251篇
  2004年   257篇
  2003年   247篇
  2002年   223篇
  2001年   190篇
  2000年   171篇
  1999年   164篇
  1998年   157篇
  1997年   165篇
  1996年   166篇
  1995年   173篇
  1994年   185篇
  1993年   144篇
  1992年   148篇
  1991年   148篇
  1990年   138篇
  1989年   104篇
  1988年   126篇
  1987年   115篇
  1986年   90篇
  1985年   194篇
  1984年   225篇
  1983年   170篇
  1982年   252篇
  1981年   160篇
  1980年   157篇
  1979年   130篇
  1978年   74篇
  1977年   55篇
  1976年   59篇
  1974年   29篇
  1973年   31篇
排序方式: 共有9140条查询结果,搜索用时 15 毫秒
31.
It is shown for the first time that the content of ubiquinone of liver increases (2.5 fold) on dietary administration of the widely-used industrial Plasticizer diethylhexyl Phthalate to the rat. The increase is localized almost entirely in mitochondria in which the concentration of the quinone Per mg Protein is 1.7 times the control. IncorPoration of the radioactive Precursor (acetate) reveals that the biosynthesis of ubiquinone is increased in the livers of Plasticizer-administered animals. The rate of degradation is not altered.  相似文献   
32.
Summary The activated dimonophosphate of 3-deoxyadenosine (cordycepin) undergoes oligomerization to produce a new family of pyrophosphate-linked oligomers in which the average repeating unit involves a nine-atom structural group. The presence of a poly(U) template increase the relative yields of higher oligomers, although the template-free reaction is itself extremely efficient.For the previous paper in this series see Schwartz et al. (1987)  相似文献   
33.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   
34.
DNA replication in maize leaf protoplasts   总被引:1,自引:0,他引:1  
Maize leaf protoplasts were investigated for their metabolic competence and capacity to synthesize DNA. When protoplasts were incubated at elevated temperatures, they exhibited a heat shock response with specific proteins being preferentially synthesized. This indicated that the protoplasts were fully metabolically functional and capable of responding to environmental stimuli. Significant DNA synthesis was observed in these protoplasts after incorporation of 3H-thymidine into chromatin by trichloroacetic acid precipitation and by incorporation of 5-bromo-2-deoxyuridine (BrdU), an analog of thymidine, detected by immunofluorescence. The immunocytochemical method revealed that about 50% of nuclei in the maize leaf protoplasts were labelled after 3 days of culture and that most of these nuclei were labelled as intensely as normal mitotic cells. Aphidicolin, an inhibitor of DNA polymerase-, decreased the percentage of labelled nuclei, demonstrating that the labelling was substantially due to replicative DNA synthesis. However, chromosome condensation was not observed. It is proposed that these protoplasts are capable of DNA synthesis, but incapable of nuclear division. Effects of media additives on the number of nuclei entering S phase in these protoplasts were also assessed by the immunocytochemical method. Inclusion of 80mM Ca2+ in the enzyme solution increased protoplast yield and also appeared beneficial to DNA synthesis. The antioxidant, n-propyl gallate, which was used to stabilize the protoplasts, delayed the onset of DNA synthesis. Arginine and spermidine produced a slight increase in DNA synthesis.Abbreviations BrdU 5-bromo-2-deoxyuridine - DMSO dimethyl sulfoxide - n-PG n-propyl gallate - PBS phosphate-buffered saline Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   
35.
Studies were carried out on glutamate dehydrogenase (GDH, EC 1.4.1.2) isolated from the SB1 and SB3 soybean (Glyciene max L. cv. Mandarin) cell cultures. The NAD(H) dependent enzyme from SB1 and SB3 cells was purified to homogeneity, and that from the SB3 cells studied in detail. It was shown to be activated by calcium. The molecular weight of the native enzyme was found to be 263 000 ± 12 000. The molecular weight of the subunits was shown to be 41 000 ± 2000, which indicates that the enzyme has a hexameric structure. Anti-GDH antibodies were produced in rabbits, to GDH purified to homogeneity from both cell cultures. Each antibody preparation reacted with the purified enzyme produced from either cell culture. Antibodies to GDH from SB3 cells were utilized to study the apparent induction of GDH, which occurs when these cells are grown in a medium with ammonium ions as the sole nitrogen source. The increase in GDH activity was shown to be due to de-novo protein synthesis. The anti-SB3-GDH antibody preparation was also tested for cross reactivity with crude GDH preparations from a number of plant sources, and purified GDH from a number of other organisms. The antibody was shown to cross react with a number of the GDH preparations.  相似文献   
36.
Summary The course of glycerol biosynthesis, initiated by exposure to –4°C, was monitored in larvae of the goldenrod gall moth,Epiblema scudderiana, and accompanying changes in the levels of intermediates of glycolysis, adenylates, glycogen, glucose, fructose-2,6-bisphosphate, and fermentative end products were characterized. Production of cryoprotectant was initiated within 6 h after a switch from +16° to –4°C, with halfmaximal levels reached in 30 h and maximal content, 450–500 mol/g wet weight, achieved after 4 days. Changes in the levels of intermediates of the synthetic pathway within 2 h at –4°C indicated that the regulatory sites involved glycogen phosphorylase, phosphofructokinase, and glycerol-3-phosphatase. A rapid increase in fructose-2,6-bisphosphate, an activator of phosphofructokinase and inhibitor of fructose-1,6-bisphosphatase, appeared to have a role in maintaining flux in the direction of glycerol biosynthesis. Analysis of metabolite changes as glycerol production slowed suggested that the inhibitory restriction of the regulatory enzymes was slightly out of phase. Inhibition at the glycerol-3-phosphatase locus apparently occurred first and resulted in a build-up of glycolytic intermediates and an overflow accumulation of glucose. Glucose inhibition of phosphorylase, stimulating the conversion of the activea to the inactiveb forms, appears to be the mechanism that shuts off phosphorylase function, counteracting the effects of low temperature that are the basis of the initial enzyme activation. Equivalent experiments carried out under a nitrogen gas atmosphere suggested that the metabolic make-up of the larvae in autumn is one that obligately routes carbohydrate flux through the hexose monophosphate shunt. The consequence of this is that fermentative ATP production during anoxia is linked to the accumulation of large amounts of glycerol as the only means of maintaining redox balance.Abbreviations G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1, 6P fructose-1,6-bisphosphate - F2,6P 2 fructose-2,6-bisphosphate - G3P grycerol-3-phosphate - DHAP dinydroxyacetonephosphate - GAP glyceraldehyde-3-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase - FBPase fructose-1,6-bisphosphatase - PK pyruvate kinase  相似文献   
37.
Summary It is difficult to distinguish between Goormaghtigh cells (G-cells) and media cells of the glomerular arterioles at the border of the Goormaghtigh cell field. Consequently, it has been unclear whether renin-positive G-cells are normally present and also whether renin-producing cells are recruited from the pool of renin-negative G-cells upon stimulation of the renin-angiotensin system (RAS). In the present study, immunohistochemical and electron-microscopic experiments have been carried out on serially sectioned kidney biopsies from four patients with pseudo-Bartter syndrome. The results strongly suggest that with longlasting stimulation of the RAS all renin-negative (secretory resting) G-cells are ultimately converted into renin-producing granular cells.Synonymous with extraglomerular mesangial cells  相似文献   
38.
39.
Acetyl-l-carnitine as a precursor of acetylcholine   总被引:2,自引:0,他引:2  
Synthesis of [3H]acetylcholine from [3H]acetyl-l-carnitine was demonstrated in vitro by coupling the enzyme systems choline acetyltransferase and carnitine acetyltransferase. Likewise, both [3H] and [14C] labeled acetylcholine were produced when [3H]acetyl-l-carnitine andd-[U-14C] glucose were incubated with synaptosomal membrane preparations from rat brain. Transfer of the acetyl moiety from acetyl-l-carnitine to acetylcholine was dependent on concentration of acetyl-l-carnitine and required the presence of coenzyme A, which is normally produced as an inhibitory product of choline acetyltransferase. These results provide further evidence for a role of mitochondrial carnitine acetyltransferase in facilitating transfer of acetyl groups across mitochondrial membranes, thus regulating the availability in the cytoplasm of acetyl-CoA, a substrate of choline acetyltransferase. They are also consistent with a possible utility of acetyl-l-carnitine in the treatment of age-related cholinergic deficits.  相似文献   
40.
A stable period length is a characteristic property of circadian oscillations. The question about whether higher frequency oscillators (0.5-8 hr) contribute to or establish the stable circadian periodicity cannot be answered at present. A sequential coupling of quantal subcycles appears possible on the basis of known “ultradian” oscillations. There is, however, no supporting evidence for such a concept. Phase response curves of the circadian clock derived from various perturbing pulses allow qualitative conclusions concerning the perturbed clock process. Deductions from computer simulations also allow conclusions about the phase of this oscillatory process.

The distinction between processes (a) essential to the clock mechanism, (b) maintaining and controlling the clock (inputs) and (c) depending on the clock (outputs) on the basis of “oscillatory” and “change of φ or τ after perturbation” seems to be useful but not stringent. Protein synthesis may be an essential or input process. Oscillatory changes of this process may be due to periodic translational control or RNA-supply. Circadian changes in protein concentration and/or activity may depend on periodic synthesis, proteolysis, covalent modifications or aggregations. Specific essential proteins have not been identified conclusively. The large overlap between the group of agents and treatments that phase shift the clock and the group that induces stress proteins suggest that the latter may play a role in the controlling (input) or essential domain.

The role of membranes in the clock mechanism is not clear: concepts assuming an essential function are based on circumstantial evidence. The membrane potential as well as Ca2+ may be involved in either input or essential function. Ca2+ -calmodulin may also be important as concluded from inhibitor experiments. It is tempting to assume that a calmodulin-dependent kinase is part of a periodic protein phosphorylation process, yet it is not clear whether the periodic protein phosphorylation that has been observed is essential or is just another output process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号