首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   8篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   1篇
  2020年   4篇
  2019年   7篇
  2018年   15篇
  2016年   6篇
  2015年   7篇
  2014年   17篇
  2013年   21篇
  2012年   6篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有132条查询结果,搜索用时 31 毫秒
31.
The non-canonical splicing of XBP-1 mRNA is a hallmark of the mammalian unfolded protein response (UPR). The proteasomal degradation of unspliced XBP-1 (XBP-1u) facilitates the termination of the UPR. Thus, understanding the mechanism of XBP-1u degradation may allow control over UPR duration and intensity.We show that XBP-1u interacts with purified 20S proteasomes through its unstructured C-terminus, which leads to its degradation in a manner that autonomously opens the proteasome gate. In living cells, the C-terminus of XBP-1u accumulates in aggresome structures in the presence of proteasome inhibitors. We propose that direct proteasomal degradation of XBP-1u prevents its intracellular aggregation.

Structured summary

MINT-7302217: XBP1-u (uniprotkb:P17861-1) binds (MI:0407) to Proteasome subunit alpha 7.2 (uniprotkb:O14818) by pull down (MI:0096)MINT-7302148: Vimentin (uniprotkb:P08670) and XBP1-u (uniprotkb:P17861-1) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7302163: XBP1-u (uniprotkb:P17861-1) binds (MI:0407) to Proteasome subunit alpha 5 (uniprotkb:P28066) by pull down (MI:0096)MINT-7302186: XBP1-u (uniprotkb:P17861-1) binds (MI:0407) to Proteasome subunit alpha 6 (uniprotkb:P60900) by pull down (MI:0096)  相似文献   
32.
Hyung Don Ryoo 《BMB reports》2015,48(8):445-453
Endoplasmic Reticulum (ER) is an organelle where most secretory and membrane proteins are synthesized, folded, and undergo further maturation. As numerous conditions can perturb such ER function, eukaryotic cells are equipped with responsive signaling pathways, widely referred to as the Unfolded Protein Response (UPR). Chronic conditions of ER stress that cannot be fully resolved by UPR, or conditions that impair UPR signaling itself, are associated with many metabolic and degenerative diseases. In recent years, Drosophila has been actively employed to study such connections between UPR and disease. Notably, the UPR pathways are largely conserved between Drosophila and humans, and the mediating genes are essential for development in both organisms, indicating their requirement to resolve inherent stress. By now, many Drosophila mutations are known to impose stress in the ER, and a number of these appear similar to those that underlie human diseases. In addition, studies have employed the strategy of overexpressing human mutations in Drosophila tissues to perform genetic modifier screens. The fact that the basic UPR pathways are conserved, together with the availability of many human disease models in this organism, makes Drosophila a powerful tool for studying human disease mechanisms. [BMB Reports 2015; 48(8): 445-453]  相似文献   
33.
The assembling of distinct signaling protein complexes at the endoplasmic reticulum (ER) membrane controls several stress responses related to calcium homeostasis, autophagy, ER morphogenesis and protein folding. Diverse pathological conditions interfere with the function of the ER altering protein folding, a condition known as “ER stress”. Adaptation to ER stress depends on the activation of the unfolded protein response (UPR) and protein degradation pathways such as autophagy. Under chronic or irreversible ER stress, cells undergo apoptosis, where the BCL-2 protein family plays a crucial role at the mitochondria to trigger cytochrome c release and apoptosome assembly. Several BCL2 family members also regulate physiological processes at the ER through dynamic interactomes. Here we provide a comprehensive view of the roles of the BCL-2 family of proteins in mediating the molecular crosstalk between the ER and mitochondria to initiate apoptosis, in addition to their emerging functions in adaptation to stress, including autophagy, UPR, calcium homeostasis and organelle morphogenesis. We envision a model where BCL-2-containing complexes may operate as stress rheostats that, beyond their known apoptosis functions at the mitochondria, determine the amplitude and kinetics of adaptive responses against ER-related injuries. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   
34.
35.
Martinkova M  Igarashi J  Shimizu T 《FEBS letters》2007,581(21):4109-4114
The activity of one of the eukaryotic initiation factor 2alpha kinases, heme-regulated inhibitor (HRI), is modulated by heme binding. Here, we demonstrate for the first time that Hg2+ strongly inhibits the function of HRI (IC50=0.6 microM), and nitric oxide fully reverses this inhibition. Other divalent metal cations, such as Fe2+, Cu2+, Cd2+, Zn2+ and Pb2+, also significantly inhibit kinase activity with IC50 values of 1.9-8.5 microM. Notably, inhibition by cations other than Hg2+ is not reversed by nitric oxide. Our present data support dual roles of Hg2+ and nitric oxide in the regulation of protein synthesis during cell emergency states.  相似文献   
36.
20(S)-protopanaxadiol (PPD)-type ginsenosides are generally believed to be the most pharmacologically active components of Panax ginseng. These compounds induce apoptotic cell death in various cancer cells, which suggests that they have anti-cancer activity. Anti-angiogenesis is a promising therapeutic approach for controlling angiogenesis-related diseases such as malignant tumors, age-related macular degeneration, and atherosclerosis. Studies showed that 20(S)-PPD at low concentrations induces endothelial cell growth, but in our present study, we found 20(S)-PPD at high concentrations inhibited cell growth and mediated apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism by which high concentrations of 20(S)-PPD mediate endothelial cell apoptosis remains elusive. The present current study investigated how 20(S)-PPD induces apoptosis in HUVECs for the first time. We found that caspase-9 and its downstream caspase, caspase-3, were cleaved into their active forms after 20(S)-PPD treatment. Treatment with 20(S)-PPD decreased the level of Bcl-2 expression but did not change the level of Bax expression. 20(S)-PPD induced endoplasmic reticulum stress in HUVECs and stimulated UPR signaling, initiated by protein kinase R-like endoplasmic reticulum kinase (PERK) activation. Total protein expression and ATF4 nuclear import were increased, and CEBP-homologous protein (CHOP) expression increased after treatment with 20(S)-PPD. Furthermore, siRNA-mediated knockdown of PERK or ATF4 inhibited the induction of CHOP expression and 20(s)-PPD-induced apoptosis. Collectively, our findings show that 20(S)-PPD inhibits HUVEC growth by inducing apoptosis and that ATF4 expression activated by the PERK-eIF2α signaling pathway is essential for this process. These findings suggest that high concentrations of 20(S)-PPD could be used to treat angiogenesis-related diseases.  相似文献   
37.
38.
Perturbations in endoplasmic reticulum (ER) homeostasis, including depletion of Ca2 + or altered redox status, induce ER stress due to protein accumulation, misfolding and oxidation. This activates the unfolded protein response (UPR) to re-establish the balance between ER protein folding capacity and protein load, resulting in cell survival or, following chronic ER stress, promotes cell death. The mechanisms for the transition between adaptation to ER stress and ER stress-induced cell death are still being understood. However, the identification of numerous points of cross-talk between the UPR and mitogen-activated protein kinase (MAPK) signalling pathways may contribute to our understanding of the consequences of ER stress. Indeed, the MAPK signalling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses. In this article, we review UPR signalling and the activation of MAPK signalling pathways in response to ER stress. In addition, we highlight components of the UPR that are modulated in response to MAPK signalling and the consequences of this cross-talk. We also describe several diseases, including cancer, type II diabetes and retinal degeneration, where activation of the UPR and MAPK signalling contribute to disease progression and highlight potential avenues for therapeutic intervention. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   
39.
40.
Translation is often repressed in cell lines that are exposed to hypoxic conditions (0.5% - 1.5% O2) but this repression requires prolonged exposure (> 16 h). We report here that prolonged exposure to hypoxia results in the depletion of glucose from the media and that the loss of glucose correlates with the shut down in translation. Furthermore, we show that the addition of glucose or reoxygenation restores translation in hypoxic PC3 cells. This indicates that both glucose depletion and hypoxia are required for translational repression. We also show that eIF2alpha phosphorylation is reversed by glucose addition. Moreover, we present data that strongly indicate that eIF2alpha phosphorylation as well as the translational inhibition that occurs when cells are grown under conditions of glucose depletion and hypoxia is pancreatic eIF2alpha kinase (PERK) independent. We believe this is the first report to show that glucose depletion is required for translational repression under hypoxic conditions and that this explains why prolonged exposure to hypoxia is required for this inhibition. Since the physiological conditions that lead to tumor hypoxia would also likely lead to reduced glucose levels, understanding the interplay of glucose and hypoxia in regulating tumor metabolism will provide important information on the growth and development of solid tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号