首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   8篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   1篇
  2020年   4篇
  2019年   7篇
  2018年   15篇
  2016年   6篇
  2015年   7篇
  2014年   17篇
  2013年   21篇
  2012年   6篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有132条查询结果,搜索用时 281 毫秒
121.
122.
123.
Ultraviolet light (UV) inhibits translation initiation through activation of kinases that phosphorylate the α-subunit of eukaryotic initiation factor 2 (eIF2α). Two eIF2α kinases, PERK and GCN2, are known to phosphorylate the Serine-51 of eIF2α in response to UV-irradiation. In this report, we present evidence that phosphorylation of eIF2α plays a role in UV-induced apoptosis. Our data show that wild-type mouse embryo fibroblasts (MEFs/s) are less sensitive to UV-induced apoptosis than MEFA/A cells in which the phosphorylation site, Ser51, of eIF2α is replaced with a non-phosphorylatable Ala (Ser51Ala). PARP expression in MEFA/A cells is reduced without being cleaved after UV-irradiation. In contrast, PARP is cleaved without a significant decrease in parental PARP in MEFS/S cells after UV-irradiation. Our data also show that MEFGCN2−/− cells, in which GCN2 is knocked out, are more sensitive to UV-irradiation, agreeing with the observation from MEFA/A cells. However, MEFPERK−/− cells, in which PERK is knocked out, are less sensitive to UV-irradiation. In addition, MCF-7-PERKΔC cells, which are stably transfected with a kinase domain deleted mutant of PERK (PERKΔC), are more resistant to UV-induced apoptosis than parental MCF-7 cells. Overexpression of wild-type PERK sensitizes MCF-7 cells to UV-induced apoptosis without directly inducing cell death. These results suggest that the level of eIF2α phosphorylation impacts PARP expression upon UV-irradiation. The eIF2α kinases may mediate UV-induced apoptosis via an eIF2α dependent or independent signaling pathway.  相似文献   
124.
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-κB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6M241T and US2, but not the soluble degradation substrate α1-antitrypsin nullHK. These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.  相似文献   
125.
FAD mutations in presenilin-1 (PS1) cause attenuation of the induction of the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP under ER stress, due to disturbed function of IRE1, the sensor for accumulation of unfolded protein in the ER lumen. PERK, an ER-resident transmembrane protein kinase, is also a sensor for the unfolded protein response (UPR), causing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) to inhibit translation initiation. Here, we report that the FAD mutant PS1 disturbs the UPR by attenuating both the activation of PERK and the phosphorylation of eIF2alpha. Consistent with the results of a disturbed UPR, inhibition of protein synthesis under ER stress was impaired in cells expressing PS1 mutants. These results suggest that mutant PS1 impedes general translational attenuation regulated by PERK and eIF2alpha, resulting in an increased load of newly synthesized proteins into the ER and subsequently increasing vulnerability to ER stress.  相似文献   
126.
In all eukaryotic cells, the endoplasmic reticulum (ER) and the mitochondria establish a tight interplay, which is structurally and functionally modulated through a proteinaceous tether formed at specific subdomains of the ER membrane, designated mitochondria-associated membranes or MAMs. The tethering function of the MAMs allows the regulation of lipid synthesis and rapid transmission of calcium (Ca2 +) signals between the ER and mitochondria, which is crucial to shape intracellular Ca2 + signaling and regulate mitochondrial bioenergetics. Research on the molecular characterization and function of MAMs has boomed in the last few years and the list of signaling and structural proteins dynamically associated with the ER–mitochondria contact sites in physiological and pathological conditions, is rapidly increasing along with the realization of an unprecedented complexity underlying the functional role of MAMs. Besides their established role as a signaling hub for Ca2 + and lipid transfer between ER and mitochondria, MAMs have been recently shown to regulate mitochondrial shape and motility, energy metabolism and redox status and to be central to the modulation of various key processes like ER stress, autophagy and inflammasome signaling. In this review we will discuss some emerging cell-autonomous and cell non-autonomous roles of the MAMs in mammalian cells and their relevance for important human diseases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   
127.
128.
The Unfolded Protein Response and Cell Fate Control   总被引:1,自引:0,他引:1  
  相似文献   
129.
130.
《Molecular cell》2022,82(8):1477-1491
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号